Relativity of arithmetics as a fundamental symmetry of physics
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Arithmetic operations can be defined in various ways, even if one assumes commutativity and
associativity of addition and multiplication, and distributivity of multiplication with respect to
addition. In consequence, whenever one encounters ‘plus’ or ‘times’ one has certain freedom of
interpreting this operation. This leads to some freedom in definitions of derivatives, integrals and,
thus, practically all equations occurring in natural sciences. A change of realization of arithmetics,
without altering the remaining structures of a given equation, plays the same role as a symmetry
transformation. An appropriate construction of arithmetics turns out to be particularly impor-
tant for dynamical systems in fractal space-times. Simple examples from classical and quantum,
relativistic and nonrelativistic physics are discussed.

PACS numbers: 05.45.Df, 02.30.-f

Symmetries of physical systems can be rather obvious
or very abstract. Lorentz transformations, discovered as
a formal symmetry of Maxwell’s equations, seemed ab-
stract until their physical meaning was understood by
Einstein. Theory of group representations, the corner-
stone of quantum mechanics and field theory, had its
roots in Lie’s studies of abstract symmetries of differen-
tial equations. It has taught us that differences in math-
ematical realizations of a symmetry may directly reflect
physical differences.

Einstein’s relativity, gauge invariance, Noether’s theo-
rems, Darboux-Bécklund transformations, or supersym-
metry are prominent examples of symmetry principles in
physics. Here we discuss a new type of principle, occur-
ring in any physical theory: The symmetry of mathe-
matical equations under modifications of arithmetic op-
erations, the induced modifications of derivatives and
integrals included. Similarly to other physical symme-
tries, the symmetry maintains the form of relevant equa-
tions, but may possess different mathematical realiza-
tions. Fractal space-times provide nontrivial examples.
A generalized arithmetics can lead to nontrivial continu-
ous dynamics in sets of measure zero, invisible from the
point of view of quantum mechanics. It opens a new
room for phenomena such as dark energy, ‘coming out of
nowhere’.

To begin with, let us consider a bijection f: X —Y C
R, where X is some set. The map f allows us to define
addition, multiplication, subtraction, and division in X,

zoy = (@) + ),
zoy = [ (f@) - f),
oy = [ (f@)f),
zoy = [ (f=@)/f(y).

One easily verifies the standard properties [1]: (1) asso-
ciativity (z@y)®z =z® (yd=2), (z0y)0z =20 (yO2),
(2) commutativity t @y =y Pz, Oy =y Oz, (3) dis-
tributivity (z @ y) @2z = (x © 2) ® (y © 2). Elements
0,1 € X are defined by 0@z = z, 1 ©® x = x, which

implies f(0) =0, f(1) = 1. One further finds z &z = 0,
x @x =1, as expected [2]. In general, it is better to de-
fine subtraction independently of addition since it may
happen that f(—zx) is undefined. An important nontriv-
ial example of f is provided by the Cantor function [3],
or more precisely the Cantor-line function defined below,
where X is the Cantor subset of [0,1] and Y = [0, 1]. If
0 & z exists, one can denote it by ox.

Practically the only difference between ®, ©, ®, ©
and +, —, -, and / is that in general multiplication is
not just a repeated addition: Typically x @ x # 2 © .
Multiplication and addition are now truly independent.

Having all these arithmetic operations one can define
a derivative of a function A4 : X — X,

satisfying

dfA(xr) © B(x)  dyA(x)
drz i ©B(z)® A(z) ©

drA(x) ® B(z) _ dyA) o dsB(z)

de(JJ)
dfl’

dfas df:L' de
dfAB()] _ dpA[B(2)]  dsB(x)
dfl‘ de(a:) dfm '

Now consider functions F' : Y — Y and Fy: X — X
related by

Fi(2) = 17 (P(f(@)))- (2)
Employing (1) and the fact that f(0) = 0 one finds

dyFy (z) -1 ( /
_ F ) 3
o= (). 3)
where F'(y) = dF'/dy is the usual derivative in Y, defined
in terms of +, —, -, and /. It is extremely important to
note that (3) has been derived with no need of differen-
tiability of f. f(0) = 0 is enough to obtain a well defined



derivative. (3) is not the standard formula known for
composite functions since no derivatives of f occur. To
understand why functions of the form (2) are so essential
let us solve the differential equation

dsA(x)
df:,E

= A(z), A(0)=1

by assuming that A(x) = @5 ya, © z°", where ©" =
2 ® - -+ @z (n times). Then, comparing term by term,
one finds the unique solution

Ax) = f1 (ef(”’)) =exp; 7,

fulfilling exp,(z © y) = exp;x © exp;y. Its inverse is
Injz=f"'(Inf(z), nf(z©y) =lnyz®Inyy.

As our next example consider a classical harmonic os-
cillator

A2 dpt dgt

where w®? = w®w. The minus sign has to have a precise
meaning so here we assume that —f(z) = f(—z). Setting
x(t) = B pa, © 9", one obtains

z(t) = C1Osinf(wot)®Cy@cosf(wdt)
where
sinyz = ‘f*l(sinf(a:))7

and C7, Cy are constants.

An instructive exercise is to plot phase-space trajec-
tories of the harmonic oscillator corresponding to vari-
ous choices of f. Fig. 1 shows the trajectories for the
Cantor-line function, defined below, and f(x) = 2™, with
n = 1,3,5. All these trajectories represent a classical
harmonic oscillator that satisfies the usual law of ‘force
oppositely proportional to displacement’, with conserved
energy ‘@2 + w?x?’, but with different meanings of ‘plus’
and ‘times’. The resulting trigonometric functions are es-
sentially the chirp signals [4] known from signal analysis.

One might still have the impression that what we do
is just standard physics in nonstandard coordinates. So,
consider the problem of a fractal Universe of dimension
4 — ¢, analogous to the one arising in causal dynamical
triangulation theory [5]. Our physical equations have to
be formulated in terms of notions that are intrinsic to the
Universe, but what should be meant by a velocity, say?
We have to subtract positions and divide by time, but
we have to do it in a way that is intrinsic to the Universe
we live in. Moreover, from our perspective positions and
flow of time seem continuous even if they would appear
discontinuous from an exactly 4-dimensional perspective.
We should not make the usual step and turn to fractional
derivatives [6], since for inhabitants of (4 —e¢)-dimensional
Universe the velocity is just the first derivative of position
with respect to time, and not some derivative of order
O0<a<l

cosy T = ffl(cosf(x)),

As usual, Cantor-like sets and Cantor-type functions
provide a rich source of highly nontrivial examples [7, 8].
A simple model of (4 — €)-dimensional space-time is the
Cartesian product of four Cantor dusts, appropriately
extended to the whole of R. Cantor dusts are easy to
work with and possess certain mathematical universal-
ity [9], but can be defined in different ways. Here we
need a precisely constructed fractal X and a bijection
f+ X — Y. Let us start with the right-open inter-
val [0,1) C R, and let the (countable) set Yo C [0,1)
consist of those numbers that have two different binary
representations. Denote by 0.t1t2 ... a ternary represen-
tation of some z € [0,1). If y € Y1 = [0,1) \ Y3 then y
has a unique binary representation, say y = 0.b1ba .. ..
One then sets f~'(y) = O.1t2..., t; = 2b;. Let
y = 0.b1bg -+ = 0.07b5 ... be the two representations
of y € Yo. We define f~!(y) = min{0.t1¢2...,0.1t5 ...},
where t; = 2b;, t; = 2b;. We have therefore constructed
an injective map f~!:[0,1) — [0,1). The triadic Cantor-
like set is defined as the image Cp1) = f_l([(),l)),
and f : Cpq) — [0,1), f = (f71)7!, is the required
bijection between Cfg ;) and the interval. For exam-
ple, 1/2 € Y3 since 1/2 = 0.15 = 0.0(1). We find
F71(1/2) = min{0.23 = 2/3,0.0(2)3 = 1/3} = 1/3. Ac-
cordingly, 1/3 € Cjg,1y while 2/3 ¢ Cjg,1). Cjo,1) is not ex-
actly the standard Cantor set, but all irrational elements
of the Cantor set belong to Cjy 1y (an irrational number
has a unique binary form), together with some rational
numbers such as 1/3. Note further that 0 € Cjg 1), with
f(0) = 0. We could proceed analogously with 1 ¢ [0,1),
since 1 = 1.(0)2 = 0.(1)2 possesses two binary represen-
tations with min{2.(0)s,0.(2)3} = min{2,1} = 1. How-
ever, instead of including 1 in Cjg 1), let us shift Cjg )
to the right by 1, thus obtaining C|; ). Proceeding in
this way we construct a fractal C' = UgezCg p41), and
the bijection f : C — R. Explicitly, if z € Cjg 1), then
r+k € Clpit1), and f(z + k) = f(z) + k by definition.
Let us call C the Cantor line, and f the Cantor-line func-
tion.

An integral is defined so that the fundamental laws of
calculus,

o dpr
and
j;; /a A"y @ dpa’ = A(z), (4)

hold true. The explicit form reads

b f(b)
/ Fi(z) ©dsr = f1 </f( ) F(y)dy> ; (5)

where [ F(y)dy is the standard (say, Lebesgue) integral
in R.

The integral so defined is not equivalent to the fractal
measure. Indeed, the fractal measure of the Cantor set



FIG. 1: Phase-space trajectories of the harmonic oscillator
with w = 1 and f(z) = x (black), f(z) = 2® (red), f(z) = «°
(green), and the Cantor-line function (blue). Taking f(z) =
" with sufficiently large n we would find a dynamics looking
like a motion along a square.
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FIG. 2: Cantor-world oscillation in Cantorian time. sing(t)
(black) and cosf(t) (red) for the Cantor-line function f. In-
habitants of the Cantor-dust space-time would experience this
as a continuous process.

embedded in an interval of length L is L”, where D =
log; 2. Thus, for L = 1/3 one finds LP? = 1/2. Since
segments [0,1/3] and [2/3,1] both have L = 1/3 they
both have the same D-dimensional volume equal 1/2.
Taking Fy(z) =1 we find

b b
d
/adfx:/a dj%@dfx:f_l(f(b)_f(a)),

and [\ dpz = 1/3, [} ydw = 1/3, [} dpz = (1/3) &
(1/3) = 1.

Now let us switch to higher dimensional examples.
First consider the plane, i.e. the Cartesian product
of two lines. Omne checks that sin?Qa: &) cos]@gx =1,
cosh;ﬂx o sinh%?2 = 1. It is an appropriate place to
stress that our approach does not seem to be related

to exponential, trigonometric, and hyperbolic functions
defined (in various ways) in the context of time-scales
dynamics [12-14], or in non-extensive thermodynamics
[15, 16], but there are links to Kolmogorov-Nagumo av-
erages employed in Rényi information theory [16, 19] (see
below). Functions siny, cosy, sinhy, coshy, satisfy the ba-
sic standard formulas such as

sinf(a @ b) =sinya © cosyb® cosya ©sing b

and the like, so

/

= zOcosyad®y®siny a,
y®cosra©xOsing «,

/

Y

defines a rotation. The rotation satisfies the usual group
composition rule, a fact immediately implying that one
can work with generalized-arithmetics matrix equations.
In an analogous way one arrives at Lorentz transforma-
tions in Cantorian Minkowski space, the Cartesian prod-
uct of four Cantor lines with the invariant form

2 2 2 2
z, ® 2t =z§? 01?6 15?0 2§

Such Lorentz transformations are unrelated to those oc-
curring in exactly 4-dimensional fractal space-time of
scale relativity [10]. In 1 4 1 dimensions, employing,

2" = 2° ©coshya © 2! ®sinh; a,

2" = ©2° ©®sinhya® 2! © coshy a,

and 2'! = 0, one finds
B=x' 22" =tanh;a.

In consequence, the fact that f(1) = 1 sets the limit
|8] <1 for maximal velocity independently of the choice
of f. In principle, problems such as clock synchroniza-
tion, composition of velocities, or the twin paradox, may
lead to direct experimental tests of f and some insights
into a putative fractal structure of space-time.

Arithmetics of complex numbers requires some care.
One should not just take f : C — C due to the typical
multi-valuedness of f~1 and the resulting ill-definiteness
of @ and ®. Definition of i as a m/2 rotation also does
not properly work since one cannot guarantee a correct
behaviour of i®" for a general f. The correct solution is
the simplest one: One should treat complex numbers as
pairs of reals satisfying the following arithmetics

(zy)@ (,y) = a2 ,yey),
(r,y) O @,y) = (o cyoy,yor’®zoy),
i = (0,1),

supplemented by conjugation (z,y)* = (z,—y). As
stressed in [11], the resulting complex structure is just
the standard one, but no mysterious ‘imaginary number’
is employed.



In this way we have arrived at quantum mechanics. As
our final example let us solve the eigenvalue problem for
a 1-dimensional harmonic oscillator. Consider

A3y (x)

His(@) = —a% 0 Zg = 057 0% 0;()
f

= Ef © ¢f(3;‘),

where «, 8 are parameters. The normalized ground state

1S
1/4 "
rorte) = f_1<<7rff((ﬁoz)) 6%>,

with the eigenvalue Epf = o © 8. The excited states can
be derived in the usual way.

There are two peculiarities of the resulting quantum
mechanics one should be aware of. First of all, if f is a
Cantor-like function representing a fractal whose dimen-
sion is less that 1, then the real-line Lebesgue measure of
the fractal is zero. Keeping in mind that states in quan-
tum mechanics are represented by equivalence classes of
wave functions that are identical up to sets of measure
zero, we can remove the Cantor line from R without alter-
ing standard quantum mechanics. Having removed the
Cantor line C' from R we still can do ordinary quantum
mechanics on R\ C, whereas C' itself can become a uni-
verse for its own, Cantorian theory. Removing C from R
does not mean that we impose some fractal-like bound-
ary conditions or consider a Schrédinger equation with
a delta-peaked potential of Cantor-set support [21]. We
just use the freedom to modify wave functions on sets
of measure zero. So we can keep the standard Gaussian
f(x) = z ground state on R\ C, and employ the Canto-
rian ¢os(z) on C. According to quantum mechanics the
resulting wave function belongs to the same equivalence
class as the usual Gaussian, and thus represents the same
state. However, now the energy is hw/2 + a ® 8, with
a ©® B ‘appearing from nowhere’. The analogy to dark
energy is evident. The additional energy is a real num-
ber so it can be added to Aw/2, similarly to many other
energies that occur in physics and are additive in spite of
unrelated origins.

The second subtlety concerns physical dimensions of
various quantities occurring in f-generalized arithmetics.
Even the simple case of w ® t may imply a necessity of
dimensionless w and t if f is sufficiently nontrivial (func-
tions of the form f(z) = 2%, ¢ € R4, are in this respect
exceptional since then x ® y = zy). In general we have
to work with dimensionless variables x in order to make
f(x) meaningful. It is thus simplest to begin with re-
formulating all the ‘standard’ theories in dimensionless
forms, similarly to ¢ = 1 and A = 1 conventions often
employed in relativity and quantum theory.

Quantum mechanics has brought us to the issue of
probability. An appropriate normalization is @Ggpr =

4

1 which, in virtue of f(1) = 1, implies ), f(px) =
> x P = 1. We automatically obtain two coexisting
but inequivalent sets of probabilities, in close analogy
to probabilities P, and escort probabilities py = P! oc-
curring in generalized statistics and multifractal theory
[15, 16]. Averages

(a)f = ®rpr © ap = fﬁl(zpkf(ak))v
%

have the form of Kolmogorov-Nagumo averages [16-18],
which implies the usual bounds amin < (@)f < Gmax-
From the point of view of modified arithmetics the con-
straints one should impose on escort probabilities and
Kolmogorov-Nagumo averages are, though, completely
different from those employed in nonextensive statistics
and Rényi’s information theory [19], provided instead of
additivity one has @-additivity in mind. Rényi’s

o(l-g)z _ 1
o)==t

can be replaced by a much wider class of fs. Of some
interest is the analogue

[(AB); @ (AB'); & (A'B); & (A'B');| < f71(2),

of the CHSH inequality [20] since, in general, f~1(2) # 2.
Incidentally, for our choice of the Cantor-line function,
with f(z + k) = f(x) + k, k € Z, one finds the standard
CHSH bound f71(2) = 2.

The modified calculus is as simple as the one one knows
from undergraduate education. What may be nontrivial
is to find f if X is a sufficiently ‘strange’ object. The case
of the Cantor line was relatively obvious, but the choice
of f may be much less evident if X is a multifractal or a
higher-dimensional fractal.

In order to conclude, let us return to Fig. 1. All the
phase-space trajectories represent the same physical sys-
tem: A harmonic oscillator satisfying the Newton equa-
tion d?z/dt? = —w?x, with the same physical parameters
for each of the trajectories. So how come the trajecto-
ries are different? The answer is: Because the very form
of Newton’s equation does not tell us what should be
meant by ‘plus’ or ‘times’. This observation extends to
any theory that employs arithmetics of real numbers. It
would not be very surprising if some alternative arith-
metics proved essential for Planck-scale physics, where
fractal space-time is expected [22], or to biological mod-
eling where fractal structures are ubiquitous. Links of
f-generalized trigonometric functions to chirps suggest
that fs even much more ‘ordinary’ than fractal functions
may also lead to nontrivial applications.

I am indebted to D. Aerts, J. Ciesliniski, M. Kuna and
J. Naudts for discussions and critical comments.
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