Bounded and stable solutions for nonlinear second order neutral difference equation

Magdalena Nockowska-Rosiak Lodz University of Technology, Poland

Co-authors and affiliations:

Marek Galewski, Robert Jankowski, Lodz University of Technology, Poland Robert Jankowski, Ewa Schmeidel, University of Bialystok, Poland

Abstract: Using the techniques connected with the measure of noncompactness we investigate the neutral difference equation of the following form

$$\Delta \left(r_n \left(\Delta \left(x_n + p_n x_{n-k} \right) \right)^{\gamma} \right) + q_n x_n^{\alpha} + a_n f(x_{n+1}) = 0,$$

where $x : \mathbb{N}_k \to \mathbb{R}$, $a, p, q : \mathbb{N}_0 \to \mathbb{R}$, $r : \mathbb{N}_0 \to \mathbb{R} \setminus \{0\}$, $f : \mathbb{R} \to \mathbb{R}$ is continuous and k is a given positive integer, $\alpha \ge 1$ is a ratio of positive integers with odd denominator, and $\gamma \le 1$ is ratio of odd positive integers; $\mathbb{N}_k := \{k, k+1, \ldots\}$. Sufficient conditions for the existence of a bounded or stable of a special type solution are presented.