NONLINEAR TIME SERIES ANALYSIS,
WITH APPLICATIONS TO MEDICINE

José María Amigó

Centro de Investigación Operativa, Universidad Miguel Hernández, Elche (Spain)
LECTURE 5
NONLINEAR METHODS IN MEDICINE II: STUDY CASES
1. STUDY CASE 1: Information content in spike trains
2. STUDY CASE 2: Coupling directionality and neural signals
3. STUDY CASE 3: Characterization of EEG and ECG
4. STUDY CASE 4: Nonlinear analysis of ECG
5. Conclusions of the course
6. References
Applications to Medicine

STUDY CASE 1: Information content in spike trains

Peculiarities of the spike trains:

- Analog (or continuous) signals
- None-or-all signals

They result from very complex interactions ⇒ random (point) processes

1. Information content in spike trains

Discretization of time and quantification:

- If (i) $T =$ duration of the signal, (ii) $Dt =$ duration of the bin,

 $$N = \frac{T}{Dt} = \text{length of the time series}$$

- Dt is the precision of the measurement.
- The quantification $x_1, ..., x_N$ depends on Dt.
1. Information content in spike trains

Neuron = Information source.

- *Probabilities estimates* from $x_1, ..., x_N =$ frequencies in sliding windows of size L:

$$\hat{p}(a_1, ..., a_L) = \frac{\# \{ n : (x_n, ..., x_{n+L-1}) = (a_1, ..., a_L) \}}{2^L}$$

- *Entropy rate of order* L:

$$h(L, Dt) = -\frac{1}{L} \sum \hat{p}(a_1, ..., a_L) \log_2 \hat{p}(a_1, ..., a_L)$$

- *Entropy rate (information per symbol)*:

$$h(Dt) = \lim_{L \to \infty} h(L, Dt)$$
1. Information content in spike trains

Alternatively, we can estimate $h(Dt)$ via **LZ76 complexity**:

$$\lim_{N \to \infty} \frac{c(x_1^N, Dt)}{Dt} = h(Dt) \quad \text{with probability 1.}$$
1. Information content in spike trains

Experimental work.

1. *Intracellular periodic current injection in vivo* (frequency = 2 Hz, 0.2 ≤ i ≤ 1.5 nA, 15.56 to 47.64 sec)

2. *Visual stimulation with sinusoidal drifting gratings* (15.87 to 23.62 sec)

3. *Intracellular random current injection in vitro* (−1.5 ≤ i ≤ 1.5 nA, 16.32 to 35.47 sec)
1. Information content in spike trains

Results on $h(Dt)$.

- **For periodic current injection in vivo:**

<table>
<thead>
<tr>
<th>Coding Frequency</th>
<th>Standard</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Hz</td>
<td>41.38</td>
<td>42.93</td>
</tr>
<tr>
<td>200 Hz</td>
<td>59.20</td>
<td>60.40</td>
</tr>
<tr>
<td>300 Hz</td>
<td>68.42</td>
<td>67.00</td>
</tr>
</tbody>
</table>

- **For visual stimulation:**

<table>
<thead>
<tr>
<th>Coding Frequency</th>
<th>Standard</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Hz</td>
<td>30.30</td>
<td>32.78</td>
</tr>
<tr>
<td>200 Hz</td>
<td>47.85</td>
<td>50.14</td>
</tr>
<tr>
<td>300 Hz</td>
<td>62.55</td>
<td>62.11</td>
</tr>
</tbody>
</table>
1. Information content in spike trains

Results on $h(\Delta t)$:

- **For random current injection in vitro (slow decay):**

<table>
<thead>
<tr>
<th>Coding Frequency</th>
<th>Standard</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Hz</td>
<td>52.38</td>
<td>53.38</td>
</tr>
<tr>
<td>200 Hz</td>
<td>68.69</td>
<td>67.23</td>
</tr>
<tr>
<td>300 Hz</td>
<td>78.00</td>
<td>74.70</td>
</tr>
</tbody>
</table>

- **For random current injection in vitro (fast decay):**

<table>
<thead>
<tr>
<th>Coding Frequency</th>
<th>Standard</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Hz</td>
<td>22.31</td>
<td>19.00</td>
</tr>
<tr>
<td>200 Hz</td>
<td>27.75</td>
<td>24.39</td>
</tr>
<tr>
<td>300 Hz</td>
<td>31.05</td>
<td>26.03</td>
</tr>
</tbody>
</table>
STUDY CASE 2: Coupling directionality and neuronal signals.

Let $X = (x_n)$ and $Y = (y_n)$ be two neuronal signals recorded from different brain areas.

Question: In which direction is information flowing?

The mutual information,

$$I(X, Y) = H(X) + H(Y) - H(X, Y)$$

is useless because

$$I(X, Y) = I(Y, X)$$
2. Coupling directionality and neuronal signals

Use the idea behind the *Granger causality*: If

(i) \(X_\delta = (x_{n+\delta}) \), \(Y_\delta = (y_{n+\delta}) \), and
(ii) information flows from the process \(Y \) to \(X \) at some later time,

then

\[
H(X_\delta | X, Y) < H(X_\delta | X)
\]

for some \(\delta > 0 \).
Definition. *Transfer entropy*

\[
I_{Y \rightarrow X}^\delta \equiv H(X_\delta | X) - H(X_\delta | X, Y) = I(X_\delta, Y | X)
= \sum p(x_\delta, x, y) \log \frac{p(x_\delta, y | x)}{p(x_\delta | x) p(y | x)}.
\]

Hence,

if \(Y \sim X \), then \(I_{Y \rightarrow X}^\delta > 0 \) for some \(\delta > 0 \).

Similarly one defines

\[
I_{X \rightarrow Y}^\delta \equiv I(Y_\delta, X | Y) = \sum p(y_\delta, x, y) \log \frac{p(y_\delta, x | y)}{p(y_\delta | y) p(x | y)}.
\]

If \(X \sim Y \), then \(I_{X \rightarrow Y}^\delta > 0 \) for some \(\delta > 0 \).
2. Coupling directionality and neuronal signals

In practice one uses averages,

\[I_{Y \rightarrow X} = \frac{1}{N} \sum_{\delta=1}^{N} I_{Y \rightarrow X}^{\delta}, \quad I_{X \rightarrow Y} = \frac{1}{N} \sum_{\delta=1}^{N} I_{Y \rightarrow X}^{\delta}, \]

where \(N \) is some convenient number of later points.

Definition. The *directionality index* between \(X \) and \(Y \) is

\[D_{XY} = \frac{I_{X \rightarrow Y} - I_{Y \rightarrow X}}{I_{X \rightarrow Y} + I_{Y \rightarrow X}} \in [-1, +1] \]

Then

\[
\begin{array}{c|c}
D_{XY} > 0 & \Rightarrow \ X \text{ drives } Y \\
D_{XY} = 0 & \Rightarrow \ \text{symmetrical coupling} \\
D_{XY} < 0 & \Rightarrow \ Y \text{ drives } X
\end{array}
\]
If you use ordinal symbolic dynamics, $I_{X \rightarrow Y}$ and $I_{Y \rightarrow X}$ are called *permutation transfer entropy*.

X. Li & G. Ouyang\(^2\) compared *conventional* and *permutation* TE both with numerical models and *intracranial* EEG recorded in the CA1/CA3 hippocampus region of rats.

They confirmed that at the formation of a CA1-CA3 epileptic seizure, the coupling is unidirectional.

2. Coupling directionality and neuronal signals

(X. Li and G. Ouyang)
The lag τ was chosen such that $I(X, Y)$ is maximal.
2. Coupling directionality and neuronal signals

Advantages of the permutation transfer entropy\(^3\):

1. Computationally fast
2. Invariant wrt monotonous transformations
3. Robust against additive and multiplicative noise
4. Does not require long segments of data
5. PTE is superior to conventional TE and Granger causality for identifying the coupling direction between neuronal networks.

STUDY CASE 3: Characterization of EEG and ECG

Historical background.

- (1985) A. Babloyantz et al., *Evidence of chaotic dynamics of brain activity during the sleep cycle*, *Phys. Lett A* 111, 152.

Scope of nonlinear time series analysis: *Extract information*

But, what information?
3. Characterization of EEG and ECG

Very often the analyst only needs to discriminate different kinds of dynamics.

Examples:

- *Epilepsy*: normal/abnormal
- *Sleep*: various sleep stages
- *Coma and anaesthesia*: difference depths
- *Mental states and psychiatric disease*
- *Disturbed cognition and dementia*: different degrees
- *Cardiac diseases*: normal/abnormal
Example 14. *Dynamical change during an epileptic seizure*

- One of the first applications of ordinal patterns and permutation entropy
- Paradigmatic example of application of nonlinear TSA to Medicine

3. Characterization of EEG and ECG

(Y. Cao et al.)
3. Characterization of EEG and ECG

Example 2\(^5\). *Prediction of absence seizure*

Example 3\(^6\). ECG from patients with congestive heart failure (CHF). U. Parlitz et al. used biomarkers obtained via

- Heart rate variability parameters
- Non-ordinal symbolic dynamics
- Ordinal 3- and 4-patterns statistics (with different lags)

for discriminating CHF patients from control groups using beat-to-beat time series \((RR_n)\).

3. Characterization of EEG and ECG

![Graph showing EEG and ECG waveforms with time and voltage axes labeled.](image-url)
3. Characterization of EEG and ECG

Non-ordinal symbolization used for heart rate variability

- **Binary quantification:**

\[
q_n(RR_n) = \begin{cases}
0 & \text{if } |RR_n - RR_{n-1}| < \theta \\
1 & \text{if } |RR_n - RR_{n-1}| \geq \theta
\end{cases}
\]

or, to study acceleration and deceleration runs,

\[
q_n(RR_n) = \begin{cases}
0 & \text{if } RR_n - RR_{n-1} \geq 0 \\
1 & \text{if } RR_n - RR_{n-1} < 0
\end{cases}
\]

- **Four-symbol quantification:**

\[
q_n(RR_n) = \begin{cases}
0 & \text{if } \mu < RR_n \leq (1 + a)\mu \\
1 & \text{if } (1 + a)\mu < RR_n < \infty \\
2 & \text{if } (1 - a)\mu < RR_n \leq \mu \\
3 & \text{if } 0 < RR_n \leq (1 - a)\mu
\end{cases}
\]
The best biomarker of CHF was the mean ± standard deviation of some ordinal 4-patterns.

Other authors are also using ordinal patterns as biomarkers to study biomedical time series (G. Graff, K. Keller, G. Ouyang, K. Schindler,...)
STUDY CASE 4: Nonlinear analysis of ECG

Data acquisition

- Healthy subject asleep
- Beat rate ≈ 66 beat/min
- Sampling frequency: 250 Hz (Δt = 0.004 s)
- Recording time: 3 min (N = 45000 data points)

The full nonlinear analysis involves some 5 basic steps.

4. Nonlinear analysis of ECG

Step 1: State space reconstruction

Embedding vectors

\[s(n) = (s_{n-(m-1)\tau}, \ldots, s_{n-\tau}, s_{n}) , \]

- False nearest neighbors: \(m = 10 \).
- Minimum of the mutual information: \(\tau = 9 \)
Step 2: Noise reduction

Replace

\[RR_{n+[m/2] \tau} \leftarrow \frac{1}{|B_\varepsilon(s(n))|} \sum_{s(k) \in B_\varepsilon(s(n))} RR_{n-[m/2] \tau} \]

with \(\varepsilon = 2\sigma \) or \(\varepsilon = 3\sigma \). Here \(\varepsilon = 0.065 \).

Remark. Some authors interchange steps 1 and 2. In this case, use as a rule

\[1/3 \leq m \cdot \Delta t \cdot \tau \leq 2/3 \]

in the noise reduction step.
Figure. 2D projection of the reconstructed state space with the optimal parameters $m = 10$, $\tau = 9$ before noise reduction (M. Perc).
4. Nonlinear analysis of ECG

Figure. 2D projection of the reconstructed state space with the optimal parameters $m = 10$, $\tau = 9$ after noise reduction (M. Perc).
4. Nonlinear analysis of ECG

Step 3: Determinism test

Use the Kaplan-Glass test:

- Quantize the attractor with a grid of $18 \times 18 \times \ldots \times 18 \approx 3.6 \times 10^{12}$ boxes
- The average length κ of all directional vectors V_k, is $\kappa \approx 0.94$

\Rightarrow the signal is deterministic.
Step 4: Stationarity test

Use the cross-prediction error statistic

- Number of segments: $I = 56$
- Number of points in the segments: $N/I = 800$
- Minimum cross-prediction error: 0.32
- Maximum cross-prediction error: 0.60
- Average cross-prediction error: 0.45

⇒ *the signal is stationary.*
4. Nonlinear analysis of ECG

Step 5: Computation of the attractor invariants

Recommendation: Use well-tested algorithms or off-shelf software

In general:

- TISEAN project: www.mpipks-dresden.mpg.de/~tisean
- Mathematica, MatLab, ...

\[\lambda \approx 0.015 \implies \text{the data is slightly chaotic!} \]
Conclusions of the course

1. Nature is nonlinear

2. Nonlinear time series analysis is half a science, half an art
 1. The theory is highly sophisticated
 2. The practice requires special skills

3. General recommendations
 - Extract only the information you need
 - Use different approaches and techniques
 - Be aware of the assumptions and approximations
 - Study the dependence on parameters and scaling behavior
References