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Interdisciplinary collaboration and models of blood
production system

• Collaboration with Anthony Ho and Natalia Baran (Department of
Medicine V, Univ. Heidelberg, Collaborative Research Center (SFB)
”Maintenance and Differentiation of Stem Cells in Development and
Disease”) and Wolfgang Wagner (University of Aachen, WIN Kolleg
”How old are stem cells?”)

• Models of hematopoiesis and leukemia: with Thomas Stiehl
(Heidelberg Univ.)

• Models of continuous cell differentiation: with Marie Doumic,
Benoit Perthame (Univ. P. et M. Curie and INRIA Equipe BANG )
and Jorge Zubelli (IMPA)

• Models of clonal evolution: with Jan-Erik Stecher (Heidelberg
Univ.) and Piotr Gwiazda (Warsaw Univ.)



Outline

• Stem Cells and Blood Production System: Biological
background and aims of mathematical modelling

• Models with discrete and continuous structure
• Multi-compartment models of healthy hematopoiesis
• Structured population model of continuous cell differentiation
• Models of stem-cells initiated cancer growth
• Multi-compartment and structured population models of clonal

evolution in acute leukemias

• Clinical applications



Stem cells
”Definition”

• functionally undifferentiated

• able to proliferate

• give rise to a large number of more differentiated progenitor cells

• maintain their population by dividing to undifferentiated cells

• heterogeneous in respect to morphological and biochemical
properties

Role of adult stem cells

• Populations of adult stem cells can be found in lots of different
tissues (epidermis, blood, liver, intenstinal crypts, neural tissue, ...)

• Adult stem cells govern regeneration processes

• Stem cells are found to play an important role in cancerogenesis
(cancer stem cells)



Our example: Blood cell production system

• The Hematopoietic Stem Cell
gives rise to all types of mature
blood cells.

• Production of mature blood
cells is a stepwise process: Cell
pass through a sequence of
different maturation stages.

• Cell properties are regulated by
different signals.

Adapted from Blau, Brazelton, Weimann, Cell 105, 2001

and Benninghoff, Drenckhahn, 17 ed, 2008



Stem cell initiated cancer

There exists evidence that some cancers originate from cells with stem
cell like properties (e.g. Bonnet et al, Nat Med 1997).

Definition of Leukemia
Leukemia is characterized by an increase of aberrant cells (blasts) in bone
marrow



Challenge: Multiscale character of the process

• Hematopoietic Stem Cells (HSC) are situated in red bone marrow

• Biochemical and biomechanical regulatory mechanisms

• Cell migration (eg. chemotaxis)



Models of hematopoiesis

Choice of the model depends on the questions we want to address.

• Quiescence, proliferation and replicative senescence

• Modelling of cell cycle (or simplifications)

• Nonlinearities to regulate the system

• Feedback-loops
• Competition for space (eg. stem cells niches)

• Differentiation (maturation): discrete or continuous process?

• → IBM or PDE/ODE/DDE/SDE models



Partial overview of existing models of blood
production system

• Michor, Dingli, Pacheco, Traulsen et al: Linear models to describe
exponential growth of cancer cells populations.

• Loeffler and Roeder et al:

• Stochastic transition of stem cells between proliferation and
quiescence.

• Linear transition between stem cells and mature cells.

• Kim, Perthame, Doumic: Reduction of Roeder’s model to
differential equations with the same behaviour.

• Mackey, Adimy, Crauste et al: Models with delay to describe
possible oscillations.

• Tomasetti, Levy, Kimmel: Branching processes and evolution of
leukemia

• ...



Our aim: to understand better cell differentiation
and the regulation process

• Symmetric vs. asymmetric cell divisions

• Dynamically regulated cell properties

• Nonlinear feedback and signalling molecules

Ho and Wagner, Curr. Opin. Hematol., 2007.



Multi-compartment models of cell
differentiation: healthy hematopoiesis



Model assumptions
We consider only one cell lineage Cells can die Cells can divide

Cells differentiate Cells self-renew

• Signalling molecules influence behaviour of unmature cells.

• Signal concentration depends on mature cell counts.

• Mature cells do not divide



Key parameters

• Proliferation rate describes how often a given cell divides

• Fraction of self-renewal describes which fraction of daughter cells
has the same properties as the mother cells

• Death rate describes which fraction of a given cell population dies
per unit of time



Multi-compartment model: discrete structure

du1

dt
= p1(u1, s)− g1(u1, s)− d1u1,

dui

dt
= gi−1(ui−1, s) + pi (ui , s)− gi (ui , s)− diui ,

dun

dt
= gn−1(un−1, s)− dn(un, s).

Marciniak-Czochra, Stiehl, Jäger, Ho, Wagner, SC Dev 18, 2009



Multi-compartment model: discrete structure

du1

dt
= 2p1a1u1 − p1u1 − d1u1,

dui

dt
= (2ai − 1)piui + 2(1− ai−1)pi−1ui−1 − diui ,

dun

dt
= 2(1− an−1)pn−1un−1 − dnun.

Marciniak-Czochra, Stiehl, Jäger, Ho, Wagner, SC Dev 18, 2009



Model of feedback

Dynamics of signalling molecules (cytokines)

dS(t)

dt
= α− µS(t)− βun(t)S(t)

Quasi steady state approximation (Tikhonov Theorem)

s(t) =
1

1 + kun(t)
∈ [0, 1],

where s(t) := µ
αS(t) and k := β

µ .



Assumptions on cytokines

Regulation modes

• All regulated cell properties depend linearly on the cytokine
concentration

1 Regulation of proliferation: pi (s(t)) := pi s(t) =
pi,max

1+kun(t)

2 Regulation of self renewal versus differentiation
ai (s(t)) := ai s(t) =

ai,max

1+kun(t)

Three models are considered

Proliferation Rate Fraction of Self-Renewal
Model 1 cytokine-dependent constant

Model 2 constant cytokine-dependent

Model 3 cytokine-dependent cytokine-dependent



Model 1
constant self-renewal
regulated proliferation

du1

dt
= (2a1−1)p1,maxsu1 − d1u1

· · ·
dui

dt
= (2ai−1)pi,maxsui + 2(1−ai−1)pi−1,maxsui−1 − diui

· · ·
dun

dt
= 2(1− an−1)pn−1,maxsun−1 − dnun

s =
1

(1 + kun)

ui - cell density ai - fraction of self-renewal
pi,max - maximal proliferation rate di - death rate



Model 2

regulated self-renewal
constant proliferation

du1

dt
= (2a1,maxs−1)p1u1 − d1u1

· · ·
dui

dt
= (2ai,maxs−1)piui + 2(1−ai−1,maxs)pi−1ui−1 − diui

· · ·
dun

dt
= 2(1− an−1,maxs)pn−1un−1 − dnun

s =
1

(1 + kun)

ui - cell density ai - fraction of self-renewal
ai,max - max. fraction of self renewal di - death rate



Model 3
regulated self-renewal
regulated proliferation

du1

dt
= (2a1,maxs−1)p1,maxsu1 − d1u1

· · ·
dui

dt
= (2ai,maxs−1)pi,maxsui + 2(1−ai−1,maxs)pi−1,maxsui−1 − diui

· · ·
dun

dt
= 2(1− an−1,maxs)pn−1,maxsun−1 − dnun

s =
1

(1 + kun)

ui - cell density ai - fraction of self-renewal
ai,max - max. fraction of self renewal pi,max - max. prolif rate
di - death rate



Medical application: Hematopoietic reconstitution

• Stress conditions (chemotherapy)

• Bone marrow transplantation (CD34+ cells)

• Blood regeneration



Numerical results

• Regulation of self-renewal fractions is the most effective mechanism
of hematopoietic reconstitution



Model calibration

Available data

• Initial conditions

• Proliferation rates in a steady state

• Steady state population sizes

• Clearance of leukocytes from blood stream

Initial conditions
Cell Type number of transplanted cells per kg body weight

prim HSC 1 ≈ 3 · 103

LTC-IC ≈ 36 · 103

CFU-GM ≈ 155 · 103

CFU-G ≈ 54 · 104

Myeloblast 0

Promyelocyte 0

Myelocyte 0

Mature neutrophil 0



Parameter sets

Parameter Value Parameter Value Parameter Value Parameter Value Parameter Value

a1 0.5 a1,max 0.77 p1 2.15 · 10−3 1
day

p1,max 7.6 · 10−3 1
day

d8 0.6925 1
day

a2 0.4993 a2,max 0.7689 p2 11.21 · 10−3 1
day

p2,max 39.6 · 10−3 1
day

k1 6 · 10−9

a3 0.4779 a3,max 0.7359 p3 5.66 · 10−2 1
day

p3,max 0.2 1
day

k2 12.8 · 10−10

a4 0.4986 a4,max 0.7678 p4 0.1586 1
day

p4,max 0.56 1
day

a5 0.1 a5,max 0.154 p5 0.32 1
day

p5,max 0.32 1
day

a6 0.0714 a6,max 0.11 p6 0.7 1
day

p6,max 0.7 1
day

a7 0.3929 a7,max 0.605 p7 1 1
day

p7,max 1 1
day

Parameter Value Parameter Value Parameter Value Parameter Value Parameter Value

a1 0.5 a1,max 0.77 p1 2.15 · 10−3 1
day

p1,max 7.6 · 10−3 1
day

d8 0.6925 1
day

a2 0.4994 a2,max 0.769 p2 11.21 · 10−3 1
day

p2,max 39.6 · 10−3 1
day

k1 6 · 10−9

a3 0.4743 a3,max 0.7304 p3 5.66 · 10−2 1
day

p3,max 0.2 1
day

k2 12.8 · 10−10

a4 0.4982 a4,max 0.7673 p4 0.1586 1
day

p4,max 0.56 1
day

a5 0.4286 a5,max 0.66 p5 0.32 1
day

p5,max 0.32 1
day

a6 0.0714 a6,max 0.11 p6 0.7 1
day

p6,max 0.7 1
day

a7 0.0357 a7,max 0.055 p7 1 1
day

p7,max 1 1
day



Model validation: Comparison to patients data
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Stiehl, Ho, Marciniak-Czochra, Bone Marrow Transplantation 49, 2014



Comparison to Clinical Trial Data Data

Stiehl, Ho, Marciniak-Czochra, Bone Marrow Transplantation 49, 2014



Model analysis

• Trivial steady state - unstable (unless it is the only equilibrium)

• Semi-trivial steady state: (0, ..0, ūk , .., ūn) - linearly unstable iff
there exists a steady state with more positive components

• Unique positive steady state: (ū1, .., ūn) - globally stable ?

• Global stability for the 2-compartment model

L(u1(t), u2(t)) :=
1

p1G(ū2)
L21(t, u1(t), u2(t))+

1

d2
L22(t, u1(t), u2(t))

with G(ξ) = 2(1− a1/(1 + ku2)) and

L21(t, u1, u2) :=
u1

ū1
− 1− ln

u1

ū1
,

L22(t, u1, u2) :=
u2

ū2
− 1− 1

ū2

Z u2

ū2

G(ū2)

G(ξ)
dξ.

• Hopf bifuraction and oscillations in the 3-compartment model.

Stiehl and Marciniak-Czochra, Math. Comp. Models., 2010

Nakata, Getto, M-C and Alarcon, J. Biol. Dynamics, 2012 Getto,

M-C, Nakata and dM Vivanco, Math. Biosciences, 2013



Biological interpretation of analytical constraints

(1) (2a1,max − 1)p1 > d1

⇔ ∃s ∈ (0, 1) s. t. (2a1,maxs − 1)p1 > d1

⇔ ∃s ∈ (0, 1) s. t. dc1

dt > 0

Interpretation: There exist signal levels s. t. the death rate is not larger
than the reproduction rate

Special case:

If d1 = 0: (1) ⇔ a1,max >
1
2

Interpretation: Self-renewal of stem cells has to be greater than
differentiation



Biological interpretation of analytical constraints

Signal intensity of self-maintenance

The signal intensity that is needed to maintain the size of population i
without cell influx from downstream compartments is needed
(i.e., (2ai,maxsi−1)pici − dici = 0 )

(2) 2a1,maxp1(di + pi )− 2ai,maxpi (d1 + p1) > 0, for i = 2, . . . , n − 1

⇔ s1 < si for i = 2, . . . , n − 1

Interpretation: The stem cell population needs less cytokine molecules
to maintain its size than all other cell populations without cell influx from
downstream compartments.

Special case:

If d1 = · · · = dn−1 = 0: (2)⇔ a1,max > ai,max



Biological synthesis

”Stem-Cell-Theorem”
In the given models the stem cell population can be characterised by the
following properties:

(1) For some cytokine levels the death rate is smaller than the
reproduction rate

(2) The signal intensity (cytokine level) needed for maintenance of the
population size is smaller than that of all other cell populations.

Remark
The signal intensity of self-maintenance is defined on the level of a whole
(sub)population and not on the level of single cells. It takes therefore
heterogeneity of stem and progenitor cell populations into account.



What did we learn from the discrete models?
Conclusions

• Regulation of a self-renewal coefficients is a key factor during
hematopoietic recovery after bone marrow transplantation

• The proposed model is able to explain observed heterogeneity of
clinical outcomes and gives an idea how recovery depends on the
transplant size

• Stem cell behaviour might be a property of a whole cell population

Questions and ideas

• In how far is “stemness” a cellular property and in how far is it the
result of an interplay of cells and their environment?

• Is “stemness” a kind of program that could be executed in a great
number of cells under suitable conditions?

• Is the self-renewal potential important in cancer development?



Models of continuous differentiation



Continuous maturation

Differentiation process

• There are indications that the differentiation process involves
transitions which are continuous, along with discrete ones

• Cells may undergo continuous transformations between divisions

• Stage of differentiation may be quantified by the level of some
proteins

Do we need different models?

• Continuous maturation structure may lead to the new effects in the
dynamics



Structured population model: continuous structure

We consider a continuous structure variable describing the differentiation
stage of a cell.

∂tu(x , t) + ∂x [g(x , v(t))u(x , t)] = p(x)u(x , t)

Doumic, M-C, Perthame, Zubelli, SIAM J Appl Math 71, 2011



Structured population model

Stem cells

d
dt w(t) = α(v(t))w(t)

Mature cells

d
dt v(t) = g(x∗, v(t))u(x∗, t)− µv(t),

Progenitor cells - structured by a maturity level x ∈ [0, x∗]

∂tu(x , t) + ∂x [g(x , v(t))u(x , t)] = p(x)u(x , t),
g(0, t)u(0, t) = gw (t)w(t)

Assumptions: pw = p(0) and aw = a(0).



Discrete vs continuous model

• Question: Can we obtain the continuous model from the discrete
one?

du1

dt
= p1(u1, s)− g1(u1, s)− d1u1,

dui

dt
= gi−1(ui−1, s) + pi (ui , s)− gi (ui , s)− diui ,

dun

dt
= gn−1(un−1, s)− dn(un, s).

• Answer: No. Only if we assume that differentiation is independent
on proliferation



Discrete vs continuous model

Corrective term
Decorrelation between differentiation and proliferation is needed, else due
to orders of magnitude in the limit equation the transport appears as a
first order corrective term and we obtain

∂tu(x , t) + ε∂x [g(x , s)u(x , t)] = p(x , s)u(x , t)
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Model analysis - Stationary solutions

• Solutions (w̄ , ū, v̄) of the system

α(v̄)w̄ = 0,

d

dx
[ḡ(x)ū(x)] = p(x)ū(x),

ū(0) = w̄ ,

ḡ(x∗)ū(x∗)− µv̄ = 0,

where ḡ(x) := g(x , v̄).

• There exists a positive steady state iff α(0) > 0 (aw > 1/2 ).
In this case, it is unique.

• Similar condition as in the discrete model, but here no semi-trivial
steady states.



Model analysis - Extinction and persistence

Theorem
α(0) < 0 −→ extinction at exponential rate,
α(0) > 0 −→ solutions bounded away from zero

Proof of extinction using entropy

γw(t) +
∫ x∗

0
e−βxu(x , t)dx + e−βx∗v , with γ, β > 0.

Proof of positivity using

dw

dt
≥ α (M4wγ) w

Remark
A similar alternative is found in many other nonlinear structured models
(Doumic, Kim, Perthame for CML, Calvez, Lenuzza et al. for prion
equations, Bekkal, Brikci, Clairambault, Perthame for cell cycle)



Linearised system and eigenvalue problem

• Characteristic equation in the most general case

Λ + µ− dg

dv
(x∗, v̄)ū(x∗) =

=

(
p2

w

dα

dv
(v̄)

w̄

Λ
+

x∗∫
0

f (s)e

sR
0

Λ
g(σ,v̄) dσ

ds

)
e
−

x∗R
0

Λ−p(s)
g(s,v̄) ds

with f (x)e

xR
0

p(s)
g(s,v̄) ds

= −∂x [ dg
dv (x , v̄)ū(x)]



Simplest case: no feedback on the maturation
process g(x , v) = g(x)

• Characteristic equation

λ2 + µλ = µv̄
dα

dv
(v̄)e−τλ, τ =

x∗∫
0

1

g(s)
ds > 0

Proposition

Assume that α(0) > 0, and g is independent of v . Then,
(i) for 1 < τ v̄ | dαdv (v̄)| < π

2 , the system undergoes a Hopf bifurcation for
a single value µ0 > 0 of the parameter µ. Therefore the steady state can
be either locally stable or unstable.
(ii) Further bifurcations also occur for τ v̄ | dαdv (v̄)| > 2kπ + π

2 and k ≥ 1
for at least one value µk > 0.

Proof by looking for purely imaginary solutions, which are the places

where a bifurcation can occur.



Numerical simulations of the unstable case I

0 20 40 60 80 100
0

1

2

3

4

5

6

7 x 109

Time

Ma
tur

e c
ells

 

 

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5 x 107

Time

ste
m 

ce
lls

 

 



Case motivated by the discrete model

• Case of α(v) = pw ( 2aw

1+kv − 1) and g independent of x

Theorem
Let aw > 1

2 , and (ū, v̄ , w̄) the unique steady state solution. If the
maturation rate g(x , v) is independent of the maturity of the cell x and if
the proliferation rate p is constant, then the steady state (ū, v̄ , w̄) is
locally linearly stable. For a non-decreasing proliferation rate, instability
may appear.

Proof using the same ideas, but longer calculations.



Numerical simulations of the unstable case II
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Comparison of the models

Discrete differentiation model

• Trivial steady state - unstable (unless it is the only equilibrium)

• Semi-trivial steady state: (0, ..0, ūk , .., ūn) - linearly unstable iff
there exists a steady state with more positive components

• Unique positive steady state: (ū1, .., ūn) - globally stable

Continuous differentiation model

• There exists a unique positive steady state.

• Similar conditions as in the discrete model, but here no semi-trivial
steady states.

• The structure of steady states as in 2-compartment models

• Hopf bifurcation and oscillations possible (as in 3 (and more) -
compartment models)



Discrete vs continuous model → challenges

• Unexpected: different structure of steady states.

• It is important to understand the nature of differentiation process
(gene expression or epigenetics changes?)

• To include effects of semi-extinction of populations in the structured
population approach, it is necessary to allow for the non-Lipschitz
velocity function function g and lack of the uniqueness
(multistability and hysteresis in the intracellular regulation?)

• Structured population model with measure-transmission conditions
(in a spaces of positive Radon measures) can account for both
discrete and continuous effects.

Gwiazda, Jamroz and Marciniak-Czochra, SIAM Math Anal, 2012



Stem cells-initiated cancer development



Extension of the model to the case of cancer

Questions

• What are crucial properties of leukemia initiating cells (LIC)
enabling them to establish a leukemic cell population?

• What distinguishes LIC from HSC?

• How do properties of LIC influence treatment response?

Model of leukemia

• We include a leukemic cell line in the model of hematopoiesis

• We do not model the process of mutation.

• We investigate what happens to a (small) population of leukemic
cells appearing at time t = 0 in the healthy equilibrium.



Model of leukemia

How to model competition between healthy and cancer cells?

• Leukemic cells are sensitive to cytokines of healthy hematopoiesis.

• Cells compete for spatial or environmental resources.



Model of leukemic and healthy cell lines
d
dt l1 = (2al

1s−1)pl
1l1−d l

1l1
d
dt l2 = (2al

2s−1)pl
2l2 + 2(1−al

1s)pl
1l1−l2d l

2

· · · · · ·
d
dt lm−1 = (2al

m−1s−1)pl
m−1lm−1 + 2(1−al

m−2s)pl
m−2lm−2−lm−1d l

m−1
d
dt lm = 2(1−al

m−1s)pl
m−1lm−1−lmd l

m

d
dt c1 = (2ac

1s−1)pc
1 c1−dc

1 c1
d
dt c2 = (2ac

2s−1)pc
2 c2 + 2(1−ac

1s)pc
1 c1−c2dc

2

· · · · · ·
d
dt cn−1 = (2ac

n−1s−1)pc
n−1cn−1 + 2(1−ac

n−2s)pc
n−2cn−2−cn−1dc

n−1
d
dt cn = 2(1−ac

n−1s)pc
n−1cn−1−cndc

n

s = 1
1+kccn+k l lm

li : Leukemic cell line, parameters al
i , pl

i , d l
i ,

ci : Healthy cell line, parameters: ac
i , pc

i , dc
i ,

s: Feedback signal, parameters kc , k l

Stiehl and Marciniak-Czochra, Math. Mod. Nat. Phenomena, 2012



Establishment of leukemia: Stability analysis

Question:
What properties are necessary that a small clone of LSC is able to expand?
n = m = 2



Coexistence of healthy and cancer cell populations

Examples:

• Myelodysplasia, monoclonal gammopathia of unknown significance
(MGUS), preleukemic states, chronic phases



Different scenarios of leukemia establishment
• Linearised stability analysis.

• Change of one cell property out of a1, p1, d1 may lead to establishement
of leukemia, but with different dynamics.

Example 1

al
1 = ac

1, pl
1 > pc

1 , d l
1 = d c

1 6= 0

Interpretation:

1. Enhanced proliferation in leukemia cells due to mutations (e.g.
Burkitt-Lymphoma)

2. Inhibition of proliferation in healthy cells by leukemic cells

Example 2

al
1 = ac

1, pl
1 = pc

1 , d l
1 < d c

1

Interpretation:

1. Reduced apoptosis in leukemia cells due to mutations (e.g. B-CLL)

2. Induction of apoptosis in healthy cells by leukemic cells (e.g.
myelodysplastic syndromes)



The role of self-renewal potential

• Enhanced self-renewal is always sufficient to induce leukemia even if
the other cell properties are the same as in HSC

Example 3 (the case not understood before)

al
1 > ac

1, pl
1 = pc

1 , d l
1 = dc

1

Interpretation:

1. Enhanced self-renewal in leukemia cells due to mutations (partial or
total differentiation block, e.g. acute promyelocytic leukemia)

2. Inhibition of self-renewal in healthy cells by leukemic cells



Implications of the model analysis

• The case al
1 = ac

1, pl
1 > pc

1 , d l
1 = dc

1 = 0 always leads to existence of
multiple steady states where leukemic and healthy cells coexist

• This is not necessarily the case if al
1 > ac

1, pl
1 = pc

1 , d l
1 = dc

1 .

• Since mixed steady states may cause less severe symptoms, changes
in differentiation behaviour may be more severe than increased
proliferation.

• Even if leukemic cells divide slower than hematopoietic cells,
establishment of a leukemic population is possible.

• It may lead to a reduced /absent efficacy of chemotherapy.

• Slow dividing LSC need large self-renewal to establish. The disease
establishes slow, but may be resistant to the classical chemotherapy.



Models of clonal evolution in acute leukemias



Clonal evolution (AML)

Recent Experimental Findings

• Deep sequencing techniques allow to study the clonality and clonal
evolution patterns in leukemias (Ding et al, Nature 2012)

• Primary manifestation as well as relapses involve only few clones

• 2 major evolution patterns have been defined:

1. Repeating clones
2. Related but different subclones.

Open Questions

• Why is the number of observed clones relatively small?

• Which properties allow (sub-)clones to survive to generate relapses?

• What could be clinical implications of the sequencing studies?



Multi-clonal models

Competition for surviving factors Competition for space

• Initially m clones with varying cell properties

• We do not model mutations

• Results independent of the choice of plausible regulation

Stiehl, Baran, Ho and Marciniak-Czochra, JRS Interface, 2014



Characteristics at diagnosis

• Simulation: Evolution of 50 different clones in 50 patients

• Conclusion: Cells at primary manifestation have high proliferation
and high self-renewal



Number of clones contributing to cell mass
Independently of the number of clones present at time 0, the number of
clones significantly contributing is rarely higher than 5.

• Conclusion: Clonal selection is a dynamic property reducing the
number of relevantly contributing leukemic clones

• Mathematical analysis shows a selection process even if the number
of initial clones tends to ∞



Structured population model of clonal
evolution



Model structured by a self-renewal potential

∂tu1(t, x) =

(
2a(x)

1 + Kρ2(t)
− 1

)
pu1(t, x),

∂tu2(t, x) = 2

(
1− a(x)

1 + Kρ2(t)

)
pu1(t, x)− du2(t, x),

where ρi (t) =
∫
Ω

ui (t, x)dx , i = 1, 2

• Assumptions: p, d and K are positive constants

• a ∈ C (Ω) with 1
2 < a < 1



Main result: Clonal selection

Theorem

(i) Both u1 and u2 converge to measures with support contained in the
set

Ωa = arg max
x∈Ω

a(x) =

{
x̄ ∈ Ω

∣∣∣∣a(x̄) = max
x∈Ω

a(x)

}
as t tends to infinity.

(ii) If Ωa consists of a single point x̄ , then the solution converges to a
stationary measure (Dirac measure multiplied by a positive
constant) concentrated in x̄ .

(iii) If Ωa is a set with positive measure, then the solutions converges to
a discontinuous bounded function.

We present main steps of the proof.



1. Boundedness and positivity of masses.

Lemma
Both ρ1 and ρ2 are uniformly bounded and strictly positive.

Proof.

• Showing uniform boundedness of U(t, x) = u1(t,x)
u2(t,x) , we obtain∫

Ω

u1(t, x)dx ≤ M1

∫
Ω

u2(t, x)dx = M1ρ2(t)

• and using it to estimate the first equation, we obtain boundedness
of masses.

• Boundedness of ρ2 allows to show positivity of ρ1 by showing
uniform boundedness of ρ2

ργ1
for some 0 < γ < 1 (and hence also of

ρ2).



2. Exponential extinction of solutions in x /∈ Ωa

Lemma
Let x1, x2 ∈ Ω such that a(x1)− a(x2) < 0. Then,

u1(t, x1)

u1(t, x2)
=

u0
1(x1)

u0
1(x2)

e
p

2(a(x1)−a(x2))
1+KM3

t t→∞−→ 0.

• Proof. Choosing two points x1, x2 ∈ Ω such that a(x1)− a(x2) < 0,
and calculating

∂t
u1(t, x1)

u1(t, x2)
= p

u1(t, x1)

u1(t, x2)

(
2

a(x1)− a(x2)

1 + ρ2(t)

)
.

• The Lemma implies that the solution decays exponentially to zero in
all points x except those with maximal value of a(x).

• Strict positivity of masses excludes extinction of the solution

• Together with boundedness of mass, it leads to the conclusion that
the model solutions converge to Dirac measures localised in points
corresponding to the maximum of function a.



Simulations of a single clone selection



Simulations of multiple clones selection



Stationary solutions

• Masses (ρ̄1, ρ̄2) given by

ρ̄2 =
2 max a− 1

K
,

ρ̄1 =
d ρ̄2

p

• Infinitely many steady states explaining coexistence of several clones
with sizes dependent on initial data

• Proof of the stability is based on the Lyapunov function for the
discrete model and the following comparison result,

Lemma

Let u be a solution of du
dt = F (u) with a globally stable stationary solution

ū and let V (u) be a Lyapunov function for this equation with compact
level sets and the minimum δ achieved at the stationary solution ū. If ũ is
a solution of dũ

dt = F (ũ) + f , where f ∈ L1(R+), then ũ → ū for t →∞.



Application to therapy and cancer relapse



Cellular Properties at Relapse

Strong Chemotherapy Weak Chemotherapy

• (Sub-)clones already present at diagnosis but not contributing to
cell mass can survive therapy and trigger relapse

• Chemotherapy influences cell properties at relapse

• Chemotherapy selects for slowly proliferating cells with high
self-renewal



Iterated Therapy

Healthy Leukemic

• Identical treatment of primary manifestation and relapse may be
insufficient

• Different relapses may be triggered by the same clones

• High self-renewal and low proliferation leads to a high resistance to
chemotherapy



Comparison to Data

Fit of the Model to blast dynamics of two patients.



Clinical Implications

Possible Conclusions

⇒ Insufficient therapy (low
dose, resistance, slow
proliferation)

⇒ Probable properties:
high self-renewal, slow
proliferation

⇒ No conclusions possible

To think of:

• How to attack slowly proliferating cells ?

• How to reduce self-renewal (enhance asymmetric cell divisions)?



Perspectives

What do we need?

• Data of the processes; given in different time points; for different
subpopulations, distinguishing between normal and cancer cells.

• Better understanding of the process of cell differentiation.

Mathematical challenges

• Models of multiscale processes; including heterogeneity of cell cycle
and cell clones

• Parameter estimation

• Stochasticity

• Coupling space and structure

• Stability of new models
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