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On the numerical detection of a bifurcation simplex
in a curve

Abstract We present a numerical method which detects the presence and posi-
tion of a bifurcation simplex, a regular (k + 1)-dimensional simplex, which may
be considered as a ”fat bifurcation point”, in the curve of zeroes of the C1 map
f : Rk+1 → Rk. On the other hand, a bifurcation simplex appears in the neighbour-
hood of the bifurcation point, meaning that we have a method to approximately
locate the bifurcation point as well. The method does not require any estimation of
the derivative of the function f and refers to the values of the map f only through
the vertices of certain triangulation. The bifurcation simplex is detected by a change
in the value of the Brouwer degree of the restriction of the map f to the appropriate
k-simplex.
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1. Introduction. Let f : Rk+1 → Rk be a C1 map and the C1 curve
γ : (a, b) → Rk+1 consist of the zeroes of the map f , i.e. for each t ∈ (a, b)
the equality f(γ(t)) = 0 holds. We will consider here an algorithm tracing
the curve γ numerically. Algorithms of this class have been developed since
the 1960s and, for an extensive review of different concepts, we would like
to direct the reader to the monography [1] and a shorter review article by
the same authors [2]. Now we would like to mention that there are two main
classes of algorithms: piecewise-linear methods (PL-methods) and predictor-
corrector methods (PC-methods), and briefly describe both of them.

PL-methods start with a triangulation T of the domain and approxima-
tion of the map f using a piecewise affine function fT, extending f from
its values at the vertices of the triangulation. Then the set of zeroes of the
map fT is identified, starting from a simplex known to contain a zero of the
function f .

The class of PC-methods starts with another idea. For a smooth map
f , if we assume that the solution set is, locally, a simple C1 curve, we can
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estimate the next point in the curve by estimating the value of the derivative
of the curve’s parametrization. This leads directly to a certain initial value
problem for a first order ordinary differential equation, which may be solved
numerically. It is generally observed that both methods work very well when
the set of zeroes is a simple curve – i.e. is locally homeomorphic to the
interval. Problems appear when there is a bifurcation point in the curve.

The concept of a bifurcation point is defined in a very general way (see
the classic book [3]), but here we will follow Definition 8.1.1. from [1]. This
approach better matches the finite-dimensional case. Moreover, in the consid-
ered case, we do not have a natural parameter in our problem: the parameter
λ may be chosen as one that parametrizes the curve γ of the zeroes of the
map f , but this is not the kind of input data which is naturally related to
the map f .

Definition 1.1 Let us assume that f : Rk+1 → Rk is a continuous map and
that we have such an injective C1 curve γ : (a, b) → Rk+1 that f(γ(t)) = 0.
The point γ(t0), where t0 ∈ (a, b), is called a bifurcation point of the map
f , if there exists such an ε > 0 that each open neighbourhood U ⊂ Rk+1 of
γ(t0) contains zeroes of f which do not belong to γ(t0 − ε, t0 + ε).

According to this definition, a bifurcation point is always one of the points
in the known curve of the zeroes of the map f . We will call this curve the
trivial solutions curve. Of course the implicit function theorem is of great
help here, as it provides a necessary condition for a bifurcation point to exist.

Corollary 1.2 If γ(t0) is the bifurcation point of the C1 map f : Rk+1 →
Rk, then the rank of the derivative Df(γ(t0)) is not maximal (i.e. it is less
than k).

These ideas have been extensively studied by many authors (initially [4],
[5], more recently in [10]) in the context of maps f : R × E → E, where
E is a Banach space and f(λ, 0) = 0, thus having a trivial line of solutions
identified as γ(λ) = (λ, 0) for λ ∈ R. In this context, a bifurcation point
is one which contains, in any open neighbourhood, nontrivial solutions, i.e.
such zeroes (λ, x) of f , that x 6= 0. Sufficient conditions for the existence of
a bifurcation point are given in terms of the properties of the derivative of
the map f at a given trivial solution (λ0, 0). On the other hand, sufficient
conditions for the existence of bifurcation points may be expressed in terms of
some topological invariants. These two approaches are clearly related, with
the topological approach being more general, because it may be considered
in the context of maps f , which are not necessarily smooth. We should
mention here in particular the theorem of Krasnoselski (see the classic book
[9], also [7] where some more recent results are presented); which has many
known generalizations. These generalizations lead to the conclusion that a



J. Gulgowski 5

change in the topological (Leray-Schauder) degree is a sufficient condition for
a bifurcation point to appear (see e.g. Theorem 2.5 from [8] – the theorem
given below is actually a weaker form of this global bifurcation theorem).
Theorem ( [8], Theorem 2.5). Let F : R×E → E be completely continu-
ous such that F (λ, 0) = 0 for λ ∈ R. Let a, b ∈ R (a < b) be such that u = 0
is an isolated solution of the equation,

u− F (λ, u) = 0, u ∈ E,

for λ = a and λ = b, where (a, 0), (b, 0) are not bifurcation points of u −
F (λ, u). Furthermore, assume that

deg(I − F (a, ·), B(0, r)) 6= deg(I − F (b, ·), B(0, r)),

where B(0, r) is an isolating neighbourhood of the trivial solution. Then there
exists such a bifurcation point (λ, 0) of the map u− F (λ, u) that λ ∈ (a, b).

This idea has inspired numerous results (for a review of the concept and
different results we again refer the reader to [9] and [7] mentioned earlier).
In this paper we will also follow this concept, indicating how a change in
topological degree (the Brouwer degree in a finite dimensional case) may be
used to show numerically the existence and location of a bifurcation point in
the curve of zeroes of the map f being traced.

Both the PL and PC methods experience problems in the neighbourhood
of bifurcation points. The most important problem for both methods is that,
at each step of the algorithm, at most one new point is indicated on the curve
(door-in-door-out property). Hence, in the case of bifurcation points, we may
choose at most one of the possible branches. On the other hand, we should
also mention here that the problem of locating bifurcation points on a curve
has been extensively studied and there are known methods which enable de-
tection of the bifurcation points appearing within a single predictor-corrector
step (see Chapter 8 of [1], particularly Theorem 8.1.14). This theorem states
that when the C1 curve γ crosses a simple bifurcation point at some point
t0, then the determinant of the matrix, whose first columns are formed by
Df(γ(t)) and last column by γ′(t), changes its sign. It is worth observing
that the assumption

det
[
Df(γ(t)), γ′(t)

]
> 0

defines the orientation that is followed by the regular Euler prediction method.
A single Euler prediction step (as described in [1], algorithm 3.3.7) is given
by

ui+1 = ui + hT (Df(γ(t))),

where T (Df(γ(t))) is the tangent vector induced by the matrix Df(γ(t)) (see
[1], Definition 2.1.7). When the bifurcation point is crossed, the orientation
of the vector T (Df(γ(t))) changes and the method starts to move backwards.
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In order to compensate for this effect we should update the previous formula
to

ui+1 = ui + whT (Df(γ(t))),

where w ∈ {−1,+1} is switched to the opposite value each time a bifurcation
point is detected (see Algorithm 8.1.17 in [1] for details).

Recently, in [6] a new approach to path following was presented. It is re-
ferred to as FSC (Follow Sign Changes) algorithm. At each step, the method
builds a regular (k + 1)−simplex1 and based on the signs of the coordinate
functions of the map f at the simplex vertices, some of the faces of the sim-
plex are suggested as those which should be followed. Therefore, if there
is a bifurcation point inside the simplex, the algorithm may trace all the
branches which start there. Numerical experiments presented in [6] show
that the algorithm works well in a situation where 8 branches emanate from
a bifurcation point.

The algorithm selects the face Fi of the simplex only when each coordinate
function of the map f changes sign at the vertices belonging to the face Fi.
The topological argument here is that the face showing the sign changes may
have a nonzero topological (Brouwer) degree for a map f restricted to the
face Fi. Actually, it is shown that when there exists a coordinate with a
constant sign, then the Brouwer degree equals zero. We will examine this
issue more deeply in the next section.

Below, we are going to suggest a modification of the FSC algorithm, which
allows us to detect whether a bifurcation has appeared at a given step of the
algorithm or not. We are generally following the idea given in Chapter 8
of [1]. However, we do not refer to the derivative Df(x), but instead suggest
a certain affine map, which may be used to detect a change in the Brouwer
degree.

We must take into account the fact that any numerical method looking
at Euclidean space with a certain resolution may face natural difficulties in
precisely locating a bifurcation point. Hence, it might be a good idea to
introduce the more suitable concept of the bifurcation simplex instead. So,
when we look at simplices as ”fat points”, it is reasonable to suggest the
following definition.

Definition 1.3 We call the (k+1)-simplex σ ⊂ Rk+1 a bifurcation simplex
of the map f if there exist at least 3 different faces of the simplex containing
the zeroes of the map f , and the set f−1(0)∩∂σ is not contained in any sum
of two faces of σ.

This definition may seem slightly technical, but we need to exclude the
situation when there is a single zero of f in ∂σ lying at a vertex of σ, or
two zeroes belonging to different edges. Obviously, if the bifurcation simplex
1We call a simplex regular if all its edges have the same length.
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σ is identified, it does not necessarily mean that there exists a bifurcation
point in the curve γ inside the simplex σ. Both the situation of two curves
intersecting at a bifurcation point, and two curves passing close to each other
inside the simplex σ may make the simplex σ a bifurcation simplex. This
just means that, at the resolution given by the simplex edge, we are not able
to distinguish between these two situations.

Moreover, a simplex containing a bifurcation point is not necessarily a
bifurcation simplex. A bifurcation simplex may even appear relatively far
from the corresponding bifurcation point, but this happens when two curves
are so close to each other that we cannot distinguish them at the resolution
imposed by the simplex edge (see Figure 1).

a) a bifurcation simplex close to the bifurca-
tion point

b) a bifurcation simplex far from the bifur-
cation point

Figure 1: With a fixed resolution (simplex edge length) the bifurcation point not necessarily belongs
to the bifurcation simplex. Bifurcation simplices are shaded.

Although there does not exist any universal relation between a bifurcation
point and the corresponding bifurcation simplex, we can see that a bifurca-
tion simplex is a practical approximation of a bifurcation point at a fixed
resolution.

At the end of the paper we specify some rigorous conditions (see Lemma
3.5) that allow us to identify a bifurcation simplex. Unfortunately, the condi-
tions are not easy to verify effectively. Hence, we give some heuristic methods
and arguments aimed at developing a practical implementation.

2. Degree with respect to a k-simplex. In this section we will
look more closely at the local Brouwer degree of the map investigated in [6].
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We are going to check not only whether the degree is nonzero or not, but
also whether it equals +1 or −1. Also, we will show that this leads to a
sufficient condition (of Krasnoselski type) for the existence of a bifurcation
point. Moreover, it will be easy to check this condition numerically.

Let us start with the basic notation which will be used below. Let ei ∈ Rk
be the i−th vector of the standard basis i.e. ei = (0, ..., 0, 1, 0, ..., 0), where
the only nonzero value is the i-th coordinate. For consistency, let us denote
e0 = 0. Then ∆ ⊂ Rk equals ∆ = conv{e0, e1, ..., ek}, i.e. it is the (closed)
simplex spanned by e0, e1, ..., ek ∈ Rk. Here, by convA we mean the convex
hull of the set A. Let ∆0 denote the set of interior points of ∆. We will later
refer to the concept of the k-simplex V as a convex hull of the set of k + 1
points v0, v1, ..., vk ∈ Rk+1, but additionally we assume it is homeomorphic
to the standard simplex ∆. Equivalently, we may require that the vectors
vi − v0 for i = 1, ..., k are linearly independent (following [1] we call such
points affine independent). When we define the order of the vertices of V
(we may think of this as setting the orientation in V ), we have exactly one
affine map jV : ∆→ Rk+1 given by

jV (ei) = vi, i = 0, 1, ..., k.

For this map we can see that jV (∆) = V .
In the remainder of this section we assume that γ : (a, b) → R is the C1

curve of the zeroes of the map f , i.e. f(γ(t)) = 0 for t ∈ (a, b).

Lemma 2.1 Let us assume that such a k-simplex V ⊂ Rk+1 is given that

jV (∆) ∩ f−1(0) = jV (∆0) ∩ f−1(0) = {γ(t0)}

and γ(t0) is a regular zero of the map f . Moreover, let us assume that the
curve γ passes transversally through the simplex V . This may be described
by the following condition:

(B) the vectors v1−v0, v2−v0, ..., vk−v0, γ′(t0) are linearly independent (i.e.
form the basis of Rk+1).

Then the Brouwer degree deg(f ◦ jV ,∆0) is well defined and equals ±1.

Proof By the assumptions of the Lemma, the map f ◦ jV has exactly one
zero x0 ∈ ∆ and x0 = j−1V (γ(t0)) ∈ ∆0. It is enough to show that this is
a regular zero of the map f ◦ jV . As we can see, the derivative DjV is the
matrix whose i-th column equals vi − v0 for i = 1, ..., k.

Now we are going to show that the only zero of the linear map Df(x0) ◦
DjV equals 0. So let h ∈ Rk be such that

Df(jV (x0))(DjV h) = 0.

Hence, DjV h ∈ KerDf(jV (x0)). The kernel of the linear map Df(jV (x0))
is a subspace of dimension 1 and is spanned by γ′(t0). On the other hand,
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the vector DjV h is spanned by v1 − v0, v2 − v0, ..., vk − v0. By assumption
(B) we can see that h = 0. �

Let us call the value
deg(f ◦ jV ,∆0)

the degree of the map f with respect to the k-simplex V . Below, we are
going to present two properties of this degree.

First, we will show that the degree with respect to the k-simplex depends
continuously on V (t) for t ∈ (α, β). We can think of this as a simplex V (t)
sliding along the curve γ.

Lemma 2.2 Let us assume that the family of k-simplices V (t) ⊂ Rk+1,
V (t) = conv{v0(t), v1(t), ..., vk(t)} satisfies

jV (t)(∆) ∩ f−1(0) = jV (t)(∆0) ∩ f−1(0)

for t ∈ (α, β). Moreover, let us assume that the vertices vi(t), (i = 0, 1, ..., k)
change continuously. Then the degree

deg(f ◦ jV (t),∆0)

is constant.

Proof This observation is the direct consequence of the homotopy property
of the Brouwer degree. Let us fix two values t1, t2 ∈ (α, β) and the homotopy
h : [0, 1]×∆→ Rk given by

h(τ, x) = f(jV (τt1+(1−τ)t2)(x)).

Our assumptions guarantee that this homotopy does not have a zero on the
boundary ∂∆, hence

deg(f ◦ jV (t1),∆0) = deg(f ◦ jV (t2),∆0).

Now we are going to show that given a k-simplex V ⊂ Rk+1 satisfying
the assumptions of Lemma 2.1 with γ(t0) being a regular zero of the map
f , we may change it slightly, while ensuring that the condition (B) remains
satisfied.

Lemma 2.3 Let the k-simplex V0 ⊂ Rk+1, V0 = conv{v00, v10, ..., vk0} satisfy

jV0(∆) ∩ f−1(0) = jV0(∆0) ∩ f−1(0) = {γ(t0)},

where γ(t0) is a regular zero of f . Moreover, let us assume that condi-
tion (B) is satisfied. Then there exists such an ε > 0 that for all V =
conv{v0, v1, ..., vk} satisfying |vi − vi0| < ε, the k-simplex V satisfies

(i) jV (∆) ∩ f−1(0) = jV (∆0) ∩ f−1(0) = {γ(tV )}, for some tV ;
(ii) the vectors v1− v0, v2− v0, ..., vk− v0, γ′(tV ) are linearly independent

(i.e. condition (B) is satisfied for the simplex V ).
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Proof Because 0 6∈ (f ◦ jV0)(∂∆) and because of the continuous depen-
dence of f ◦ jV on V , we can see that, for some positive ε > 0, for all
V = conv{v0, v1, ..., vk} satisfying |vi − vi0| < ε we have 0 6∈ (f ◦ jV )(∂∆).
This implies that all the maps f ◦ jV may be joined by homotopy to f ◦ jV0 ,
hence the value of the Brouwer degree deg(f ◦ jV ,∆0) remains constant (i.e.
nonzero). Consequently, the set jV (∆0) ∩ f−1(0) is a nonempty one.

Now let us check if it is possible for the set jV (∆0) ∩ f−1(0) to contain
two points for V being arbitrarily close to V0. Let xn, yn ∈ Vn, xn 6= yn,
where Vn → V0 and f(xn) = f(yn) = 0. Taking appropriate subsequences,
we may assume that all the sequences {xn}, {yn} and {(xn − yn)/|xn − yn|}
are convergent. Since xn and yn converge to a zero of the map f belonging
to V0, their common limit must be x0. Let us assume that

xn − yn
|xn − yn|

→ p0 ∈ Rk+1.

As we can observe, p0 is a nonzero vector spanned by {vi0−v00 : i = 1, 2..., k}.
However, f(xn) = f(yn) = 0 implies that the point p0 belongs to the kernel
of Df(x0). The kernel is one-dimensional, spanned by γ′(t0), which is not
linearly dependent on {vi0 − v00 : i = 1, 2..., k}. This creates a contradiction
and shows that, for V close to V0, the set of zeroes contains at most one
element.

Therefore, we may conclude that, for V close enough to V0, there exists
exactly one zero of f in V . Because the zeroes converge to x0 as V converges
to V0, by the implicit function theorem they must belong to the curve γ.
This completes the proof. �

3. Algorithm for identifying degree changes. We are now going
to refer the observations presented in the previous section to the algorithm
presented in the paper [6]. Let us now briefly describe the FSC algorithm
presented in the above-mentioned paper.

1. The algorithm starts from an initial zero of the map f and an initial
(k + 1)-simplex σ0 surrounding this zero.

2. For a given simplex σi, we identify its k-dimensional faces, satisfying
the condition

(C1) for a k-dimensional face V there exists such a coordinate function
fj , j ∈ {1, ..., k} that the function fj has constant sign for all the points
c in the face V boundary.

These faces will be excluded from further processing. In practical im-
plementation, the sign of the coordinate functions fj is checked only at
vertices of face V .
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3. For each k-dimensional face of σi, which was not discarded in the pre-
vious step, a pivoting step is performed and a regular (k + 1)-simplex
σ′i, different from σi is found. Within the pivoting step, for a given
k-dimensional face V of σi, we look for two such vertices vi and v′i, that
conv(V,w), for w ∈ {vi, v′i}, forms a regular simplex. Of course one of
these simplices is σi and the other is σ′i.

Then it is checked whether σ′i was processed before. If not, then σ′i is
placed into a stack for further processing.

4. Take the next (k + 1)-dimensional simplex from the stack and return
to step 2.

5. The algorithm requires a stop condition, e.g. we exclude all the faces
which contain at least one vertex outside a predefined cube.

The center of each (k + 1)-simplex placed on the stack is considered to
be an approximation of a zero of f .

The idea is presented in Figure 2 in the 2-dimensional case. This picture
should only be seen as a presentation, as it clearly shows the geometrical
intuitions behind the method. Still, the 2-dimensional case is rather trivial,
and to justify it, one does not need any arguments regarding topological
degree.

Figure 2: Tracing a curve in R2.

Let us note that, instead of taking the centre of a simplex as an approx-
imation of a zero of the map f , we may treat the entire simplex as a ”fat
point”, which definitely contains the zero of the map f , and the polyhedron
built of the identified simplices as an approximation of the curve.

We are now going to focus on the special case of a curve which consists
only of regular zeroes of the map f , implying that the curve does not have
any bifurcation points.
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Lemma 3.1 Let us assume that the curve γ of zeroes of the map f passes
through the (k + 1)-simplex σ ⊂ Rk+1 in such a way that f−1(0) ∩ ∂σ =
{γ(α), γ(β)} and γ(α) ∈ jV (∆0), γ(β) ∈ jW (∆0), where V and W are
different faces of the simplex σ such that V = conv{v0, v1, ..., vk}, W =
conv{w0, v1, ..., vk}. Then

deg(f ◦ jV ,∆0) = deg(f ◦ jW ,∆0).

Proof A sample situation described in the assumptions above (in the 3-
dimensional case, i.e. for k = 2) is presented in Figure 3.

Figure 3: Curve passing through a 3-simplex.

We will refer to Lemma 2.2. First, we will define the family of k-simplices
joining V and W by

V (τ) = conv{(1− τ)v0 + τw0, v1, ..., vk}, τ ∈ [0, 1].

Let us take any x ∈ ∂∆, with x = (x1, ..., xk) and denote x0 = 1− (x1 + ...+
xk). This means that (x0, x1, ..., xk) may be interpreted as the barycentric
coordinates of the point x ∈ ∆. If x ∈ ∂∆, then at least one of its barycentric
coordinates must equal 0. Let us observe that

jV (τ)(x) = τx0w
0 + (1− τ)x0v

0 + x1v
1 + ...xkv

k ∈ σ,

and the values τx0, (1− τ)x0, x1, ..., xk are the barycentric coordinates of the
point jV (τ)(x) in the (k + 1)-simplex σ. When xi = 0 for some i = 0, 1, ..., k,
then this point belongs to the boundary ∂σ. Also, the only zeroes of f which
belong to ∂σ are γ(α) and γ(β), but their barycentric coordinates in σ require
that τ = 0 or τ = 1, as appropriate. This implies that x ∈ ∆0, so it cannot
belong to ∂∆.

This means that
jV (t)(∂∆) ∩ f−1(0) = ∅,

so the assumptions of Lemma 2.2 are satisfied and the degree must be con-
stant

deg(f ◦ jV ,∆0) = deg(f ◦ jW ,∆0).
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Remark 3.2 As we can see, it does not matter how the vertices are labeled,
so we have the same conclusion for any two faces with vi 6= wi (not necessarily
for i = 0).

Now, as a simple consequence of Lemma 3.1, we may give a sufficient
condition for the existence of a bifurcation simplex.

Theorem 3.3 Let us assume that there exist two facesV =conv{v0, v1, ..., vk}
and W = conv{w0, v1, ..., vk} of the (k + 1)-simplex σ ⊂ Rk+1, such that

deg(f ◦ jV ,∆0) 6= deg(f ◦ jW ,∆0),

and that both values are nonzero. Then there exists a face V̂ of σ, different
from V and W , which contains a zero of f , so σ is a bifurcation simplex.

Proof From the assumptions of the present theorem, we know that there is
no zero of the map f on the boundary of the faces V and W . Let us assume
now that there is no zero of the map f belonging to some other face of σ, i.e.

f−1(0) ∩ (∂σ \ (V ∪W )) = ∅.

In this case, we may again apply Lemma 2.2 as we did in the proof of Lemma
3.1, and see that

deg(f ◦ jV ,∆0) = deg(f ◦ jW ,∆0),

which contradicts our assumption.
Hence, there must exist a zero of the map f belonging to ∂σ \ (V ∪W ).

However, because the degrees deg(f ◦jV ,∆0) and deg(f ◦jW ,∆0) are nonzero,
we are certain that there are zeroes of f belonging to V and W , so the set
f−1(0) ∩ ∂σ cannot be covered by two faces of the simplex σ. �

Remark 3.4 One could ask how it may be guaranteed that both degrees
are nonzero. We can see that by Lemma 2.1 it is sufficient that simplex
σ ⊂ Rk+1 has two faces satisfying condition (B). This happens, for example,
when the face V is orthogonal to γ′(t0). Moreover, Lemma 2.3 shows that
when we disturb such an orthogonal simplex a little bit, it still satisfies the
assumptions of Lemma 2.1.

In order to apply Theorem 3.3, we will need a method to verify whether
there is a change in the Brouwer degree between two faces of the simplex
σ. A sufficient condition and its practical approximation will be presented
below.

Let us now concentrate on the k-simplex V ⊂ Rk+1,V=conv{v0, v1, ..., vk}
and the values of the map f at the vertices of V . We will try to replace
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the map f ◦ jV : ∆ → Rk with such an affine map gV : ∆ → Rk that
gV (ei) = f(vi). We will indicate sufficient conditions for the maps f ◦ jV
and gV to be joined by homotopy, and we will keep the value of the Brouwer
degree constant. Then we may observe that it is easy to calculate the value
of the degree of the map gV .

Let us assume now that

f−1(0) ∩ jV (∆) = f−1(0) ∩ jV (∆0).

We are particularly interested in the situation when the set of zeroes f−1(0)∩
jV (∆) may be linearly separated from the image of each face of the simplex
∆. This will be specified much more precisely in the assumptions of the next
lemma.

Lemma 3.5 Let us assume that
(LS) for each i = 0, 1, .., k there exists such a linear functional ϕi : Rk → R
that

ϕi(f(jV (x))) > 0,

for all x ∈ ∆i, where ∆i = conv{ej : j 6= i} is the (k − 1)-dimensional face
of ∆, not containing ei.

Then the map f ◦ jV may be joined by homotopy to the affine map gV :
∆→ Rk given by gV (ei) = f(jV (ei)).

Proof We can see that

gV (x0, x1, ..., xk) = f(v0)x0 + f(v1)x1 + ...+ f(vk)xk,

where (x0, x1, ..., xk) are the barycentric coordinates of the point x ∈ ∆.
Then, for any x ∈ ∂∆, we have x ∈ ∆i for some i ∈ {0, 1, ..., k}, and

hence the i-th barycentric coordinate xi = 0. Thus ϕi(f(vj)) > 0 for j 6= i,
and hence ϕi(gV (x)) > 0 and ϕi(f(jV (x))) > 0 for all x ∈ ∆i.It follows that,
for any τ ∈ [0, 1] and x ∈ ∆i

ϕi(τf(jV (x)) + (1− τ)gV (x)) > 0.

Hence, the homotopy h(τ, x) = τf(jV (x)) + (1 − τ)gV (x) is well defined
and this completes the proof. �

Remark 3.6 If, for a given face ∆i of ∆, there exists a coordinate function
fj ◦ jV which has a constant sign on ∆i, then the linear functional ϕi may
be chosen to be a projection (maybe with the reversed sign) onto the j−th
coordinate vector. However, as we can easily see, if condition (C1) is satisfied,
then it is not possible that such a coordinate function exists for all faces ∆i. In
other words, there must exist at least one face ∆i such that each coordinate
of the function f changes its sign at the vertices of the face ∆i. In this
situation, we must look for a function ϕi which is not a projection onto some
coordinate vector.
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The main intuition behind the (LS) condition is that we can approximate
the image of the k-simplex V by the simplex spanned by the image of the
vertices of the simplex, i.e.

f(conv{v0, v1, ..., vk}) ≈ conv{f(v0), f(v1), ..., f(vk)}.

The main motivation here is that

f(conv{v0, v1, ..., vk}) ⊂ Nωf (h)(conv{f(v0), f(v1), ..., f(vk)}),

where ωf is the modulus of continuity of the function f , h is the length of
the simplex’s edges and

Nε(A) = {y : ∃x∈A|y − x| ≤ ε}

denotes the closed ε-neighbourhood of the compact set A. To show this,
let us take y ∈ f(conv{v0, v1, ..., vk}), meaning that y = f(x) for some x ∈
conv{v0, v1, ..., vk}. Then |x − vi| ≤ h for some vertex vi implying that
|f(x)− f(vi)| ≤ ωf (h).

For a fixed i ∈ {0, 1, ..., k} and the (k − 1)-simplex

V f
i = conv{f(v0), f(v1), ..., f(vi−1), f(vi+1), ..., f(vk)},

there exists such a linear functional ϕi : Rk → R that ϕi(y) = c > 0 is
constant for all y ∈ V f

i .
Assuming f(Vi) = f(jV (∆i)) is close to V f

i , we can expect that

ϕi(f(jV (∆i))) > 0,

i.e. the (LS) condition is satisfied. Figure 4 shows examples of a situation in
which (LS) is satisfied and one in each (LS) is not satisfied.

Following this intuition we may, from now on, assume that the (LS) con-
dition is satisfied by each k−simplex considered. In this case, it is easy to
calculate the value of the Brouwer degree deg(gV ,∆0), as it is the sign of the
determinant of the matrix with i-th column equal to f(vi) (naturally, when
g−1V (0) ∈ ∆0).

Therefore, we can now see that by keeping the vertices of the k-simplices
V ordered and keeping the order unchanged, we may detect when the degree
deg(f ◦ jV ,∆0) changes. In order to do so, we just need to slightly modify
the FSC algorithm as follows:

(a) at each step the k-simplex V (i.e. each face of the (k + 1)-dimensional
simplex σ) is described by an ordered sequence of vertices

V = conv{v0, v1, ...., vk}.
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a) LS is satisfied b) LS is not satisfied.

Figure 4: Examples of when the LS condition is satisfied (a) and is not satisfied (b). The shaded
area is the simplex spanned by f(v1), f(v2) and f(v3). The bigger area is the image of the simplex
spanned by v1, v2 and v3.

Another k-dimensional face W of the simplex σ has one of the vertices vi

replaced by another vertex w of the simplex σ. Then the face W should
be identified as the ordered set of vertices

W = conv{v0, ..., vi−1, w, vi+1, ...., vk};

(b) in the case when deg(f ◦ jV ,∆0) 6= deg(f ◦ jW ,∆0) i.e.

sign det[f(v1), .., f(vi−1), f(vi), f(vi+1), ..., f(vk)] 6=

sign det[f(v1), .., f(vi−1), f(w), f(vi+1), ..., f(vk)];

we know that σ is a bifurcation simplex for the map f .

The modification presented above allows us to detect whether the simplex
σ is a bifurcation simplex. We should note that the FSC algorithm may
indicate more than two simplex faces by itself, but this does not mean that
the investigated simplex is a bifurcation simplex. It may happen that some
faces indicated by the FSC algorithm only contain spurious solutions. The
FSC algorithm by itself may follow multiple bifurcation branches, as well as
the branches of spurious solutions, but we never know which case holds. Using
the change suggested above we can say whether the investigated simplex really
is a bifurcation simplex, thus improving the pure FSC algorithm.

Additionally, it may prove very interesting if we can detect whether there
exists a bifurcation simplex somewhere on the curve γ. We have two k-
simplices V and W intersected by the curve γ(t) and want to see whether
the value of deg(f ◦ jV ,∆0) equals deg(f ◦ jW ,∆0) or not. We would like
to be able to draw the conclusion that if deg(f ◦ jV ,∆0) 6= deg(f ◦ jW ,∆0),
then there exists a bifurcation simplex on the curve γ somewhere between
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the faces V and W . It is quite obvious that, when we can join the face V to
the face W by a sequence of (k + 1)-simplices, maintaining the orientation
of the simplices, and keeping the curve γ in the interior of the sum of the
simplices (just like the FSC algorithm does), then a change in the degree
implies the existence of a bifurcation simplex.
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Metoda wykrywania sympleksów bifurkacji na krzywej
Jacek Gulgowski

Streszczenie W pracy podany jest opis metody numerycznej wykrywającej sym-
pleksy bifurkacji, foremne (k + 1)-wymiarowe sympleksy, które można uważać za
”pogrubione punkty bifurkacji”, leżące na krzywej zawierającej zera odwzorowania
klasy C1 f : Rk+1 → Rk . Sympleksy bifurkacji znajdują się (zwykle) w pobliżu
punktów bifurkacji, co oznacza, że podana metoda pozwala zlokalizować przybli-
żone położenie punktów bifurkacji leżących na krzywej w zbiorze zer odwzorowania
f . Podana metoda nie wymaga żadnych oszacowań na pochodną odwzorowania f
– odwołuje się jedynie do wartości odwzorowania f w wierzchołkach sympleksów
pewnej triangulacji przestrzeni Rk+1. Sympleks bifurkacji wykrywany jest poprzez
zmianę wartości stopnia topologicznego (stopnia Brouwera) na odpowiednich obcię-
ciach f do k-wymiarowych sympleksów zawartych w przestrzeni Rk+1.

2010 Klasyfikacja tematyczna AMS (2010): 65H10, 65H20 .

Słowa kluczowe: algorytmy śledzenia krzywych, punkt bifurkacji, sympleks bifurka-
cji.

Jacek Gulgowski was born in Gdańsk, Poland 1972. He
received his M.S. degree in Computer Science in Gdańsk
University of Technology in 1996 and in Mathematics in
University of Gdańsk in 1997. He has earned his PhD in
mathematics in Faculty of Mathematics, Physics and In-
formatics Univesity of Gdańsk in 2001. He works in the

Institute of Mathematics University of Gdańsk. His main scientific interests
are related to the field of nonlinear analysis, in particular related to bifur-
cation theory and studying properties of of the set of solution of nonlinear
boundary value problems for ordinary and partial differential equations. He
also works on various applications, especially close to computational electro-
dynamics.

Jacek Gulgowski
University of Gdańsk, Institute of Mathematics
ul. Wita Stwosza 57, 80-952 Gdańsk, Poland
E-mail: dzak@mat.ug.edu.pl

Communicated by: Henryk Woźniakowski

(Received: 11th of January 2015; revised: 5th of June 2015)

http://wydawnictwa.ptm.org.pl/index.php/matematyka-stosowana/article/viewArticle/547

