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Weighted difference schemes for systems of
quasilinear first order partial functional differential

equations

Abstract The paper deals with initial boundary value problems of the Dirichlet type
for system of quasilinear functional differential equations. We investigate weighted
difference methods for these problems. A complete convergence analysis of the con-
sidered difference methods is given. Nonlinear estimates of the Perron type with
respect to functional variables for given functions are assumed. The proof of the
stability of difference problems is based on a comparison technique. The results ob-
tained here can be applied to differential integral problems and differential equations
with deviated variables. Numerical examples are presented.
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1. Introduction We are interested in numerical approximation of clas-
sical solutions to systems of quasilinear functional differential equations with
initial boundary conditions. Difference schemes for first order partial func-
tional differential equations are obtained by replacing partial derivatives with
difference operators. Moreover, because differential equations contain func-
tional variables which are elements of the class of continuous functions, some
interpolating operators are needed. This leads to functional difference prob-
lems of Volterra type which satisfy consistency conditions on classical solu-
tions of original problems.

The papers [17, 30] initiated the theory of difference methods for initial
and initial boundary value problems for nonlinear functional differential equa-
tions of Hamilton Jacobi type. It is not our aim here to give a full review of
papers concerning explicit difference methods for quasilinear functional dif-
ferential equations. We shall mention only those which contain such reviews.
They are [7, 9, 28,32] and the monograph [16].

In recent years, a number of papers concerning implicit difference methods
for functional partial differential equations have been published. Difference
approximations of classical solutions to initial problems on the Haar pyramid
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and initial boundary value problems were investigated in [19, 20]. Implicit
difference methods for parabolic equations with initial boundary conditions
of the Dirichlet type were considered in [10,21].

In the present paper we consider a difference method obtained in the
following way. The partial derivatives with respect to spatial variable in
functional differential equations are replaced by a suitable weighted differ-
ence operators. It means that with an appropriate value of weight we obtain
explicit, implicit or strong implicit difference method. The papers [33, 34]
consider weighted difference schemes for hyperbolic nonlinear partial func-
tional differential equations. Results obtained in this paper and in [33, 34]
are motivated by papers [24]- [26] where we can find an analysis of numerical
methods with weight for nonlinear parabolic problems.

The authors of the papers [2]– [8], [15, 18, 20, 32, 33] have assumed that
given functions satisfy the Lipschitz condition or nonlinear estimates of Per-
ron type with respect to functional variables and these conditions are global.
Assumptions which were adopted in this paper are more general. It is clear
that there are differential equations with deviated variables and differential
integral equations such that local estimates of the Perron type hold and global
inequalities are not satisfied. In the paper we give suitable comments.

Theory of difference methods for functional differential equations with
local estimates of the Perron type for given functions with respect to func-
tional variable was initiated by the authors of the papers [11,22,29,31]. The
papers [11,31] deal with initial problems for Hamilton Jacobi functional dif-
ferential equations. Initial boundary value problems for nonlinear parabolic
equations were investigated in [22,29].

We formulate our functional differential problem. For any metric spaces
X and Y we denote by C(X,Y ) the class of all continuous functions from
X to Y . We will use vectorial inequalities with the understanding that the
same inequalities hold between their corresponding components.

We consider the sets

E = [0, a]× [−b, b]n, E0 = [−b0, 0]× [−b, b]n,

∂0E = [0, a]×
(
[−b, b]n \ (−b, b)n

)
where a > 0, b0 ∈ R+ = [0,∞), b = (b1, . . . , bn) ∈ Rn and bi > 0 for
1 ¬ i ¬ n. By [. . .]n we define n-dimensional intervals. For (t, x) ∈ E we define

D[t, x] =
{

(τ, s) ∈ R1+n : τ ¬ 0, (t+ τ, x+ s) ∈ E0 ∪ E
}
.

Note that D[t, x] = [−b0−t, 0]×[−b−x, b−x]n. For a function z : E0∪E → Rk

and for a point (t, x) ∈ E we define a function z(t,x) : D[t, x]→ Rk by

z(t,x)(τ, s) = z(t+ τ, x+ s), (τ, s) ∈ D[t, x].
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Then z(t,x) is the restriction of z to the set (E0∪E)∩ ([−b0, t]×Rn) and this
restriction is shifted to the set D[t, x]. Write B = [−b0 − a, 0] × [−2b, 2b]n,
then D[t, x] ⊆ B for (t, x) ∈ E.

We use the notation Rk×n for all k × n real matrices. Suppose that

f : E × C(B,Rk)→ Rk×n, f = [fij ]i=1,...,k, j=1,...,n,

g : E × C(B,Rk)→ Rk, g = (g1, . . . , gk),

ϕ : E0 ∪ ∂0E → Rk, ϕ = (ϕ1, . . . , ϕk)

are given functions. We consider the system of quasilinear differential func-
tional equations

∂tzi(t, x) =
n∑
j=1

fij
(
t, x, z(t,x)

)
∂xjzi (t, x) + gi

(
t, x, z(t,x)

)
, 1 ¬ i ¬ k, (1)

with initial boundary condition

z(t, x) = ϕ(t, x) on E0 ∪ ∂0E. (2)

We will say that f and g satisfy the condition (V) if for each (t, x) ∈ E and
for w, w̃ ∈ C(B,Rk) such that w(τ, y) = w̃(τ, y) for (τ, y) ∈ D[t, x] we have
f(t, x, w) = f(t, x, w̃) and g(t, x, w) = g(t, x, w̃). Note that the condition (V)
means that the values of f and g at the point (t, x, w) ∈ E×C(B,Rk) depend
on (t, x) and on the restrictions of w to the set D[t, x] only.

A function v : E0 ∪ E → Rk is a classical solution of (1), (2) if

(i) v ∈ C(E0 ∪ E,Rk) and the partial derivatives ∂tvi,

∂xvi = (∂x1vi, . . . , ∂xnvi), 1 ¬ i ¬ k,

exist on E,

(ii) v satisfies equation (1) on E and condition (2) on E0 ∪ ∂0E.

The existence and uniqueness theorems for classical solutions of (1), (2) are
based on two types of assumptions:

1. Regularity of given functions. The function f and g are assumed to
be continuous and satisfy nonlinear estimates of the Perron type with
respect to the functional variable.

2. Assumptions connected with the theory of bicharacteristics. It is as-
sumed that

xjfij(t, x, z)  0, 1 ¬ j ¬ n, (t, x, z) ∈ E × C(B,Rk), (3)
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where 1 ¬ i ¬ k. This assumption ensures that bicharacteristics of (1)
satisfy the following monotonicity conditions. Suppose that v ∈ C1(E0∪
E,Rk) and let the function gi[v](·, t, x)=(gi1[v](·, t, x), . . . , gin[v](·, t, x)),
(t, x) ∈ E, denotes the solution of the Cauchy problem

θ′(τ) = −fi(τ, θ(τ), v), θ(t) = x.

The function gi[v](·, t, x) is the i−th bicharacteristic of (1) correspond-
ing to the solution v and starts at the point (t, x). The condition (3)
implies that for 0 ¬ xj ¬ bj the bicharacteristic gij(·, t, x) is non in-
creasing and is nondecreasing for −bj ¬ xj < 0.

The monotonicity property of bicharacteristics, which is obtained through
the condition (3) and assumption on the regularity of given functions, en-
sures the existence of classical solutions for (1), (2). This results are based on
the method of bicharacteristics and can be deduced from the monograph [16],
Chapter V . The uniqueness criteria for (1), (2) can be received from com-
parison theorems for functional differential inequalities with initial boundary
conditions ( [1], [16]).

We are interested in numerical approximation of classical solutions to
problem (1), (2).

Hyperbolic first order partial functional differential equations find ap-
plications in different branches of knowledge. The authors of [4] proposed
quasilinear differential integral systems as simple mathematical models for
the nonlinear phenomenon of harmonic generation of laser radiation through
piezoelectric crystals for nondispersive materials and of Maxwell-Hopkinson
type. Almost linear differential integral equations can be used to describe a
model of proliferating cell population, see [6]. Quasilinear evolution equations
with a bounded delay with applications to heat flow were considered in [5].
Hyperbolic conservation laws with finding memory can be viewed as quasi-
linear systems with integral terms of the Voltera type like we can observe in
the paper [13].

The paper is organized as follows. In Section 2 we propose a new func-
tional difference method corresponding to (1), (2). In Section 3 we prove
that there is exactly one solution of the initial boundary value problem for
difference equations generated by (1), (2). We give estimates of solutions to
functional differential and functional difference problems. A convergence re-
sult and an error estimate of approximate solutions are presented in Section
4. Numerical examples are given in the last part of the paper.

2. Discretization of differential equations
We formulate a class of difference schemes for (1), (2). We will denote by

F(X,Y ) the class of all functions defined on X and taking values in Y , where
X and Y are arbitrary sets. Let N and Z be the sets of natural numbers and
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integers, respectively. For x ∈ Rn, p ∈ Rk and for the matrix U ∈ Rk×n we
write

x = (x1, . . . , xn), ‖x‖ =
n∑
i=1

|xi|,

p = (p1, . . . , pk), ‖p‖∞ = max {|pi| : 1 ¬ i ¬ k},

U = [uij ]i=1,...,k,j=1,...,n, ‖U‖ = max


n∑
j=1

|uij | : 1 ¬ i ¬ k

.
For a function w ∈ C(B,Rk) we define

‖w‖B = max {‖w(τ, s)‖∞ : (τ, s) ∈ B}.

We define a mesh on the set E ∪ E0 in the following way. Let (h0, h
′),

h′ = (h1, . . . , hn), hj > 0 for 0 ¬ j ¬ n, stand for steps of the mesh. Let us
denote by H the set of all h = (h0, h

′) such that there are K0 ∈ Z and K =
(K1, . . . ,Kn) ∈ Nn with the properties K0h0 = b0 and (K1h1, . . . ,Knhn) = b.
For h ∈ H and (r,m) ∈ Z1+n, where m = (m1, . . . ,mn), we define nodal
points as follows

t(r) = rh0,

x(m) =
(
x

(m1)
1 , . . . , x(mn)

n

)
= (m1h1, . . . ,mnhn).

Let N0 ∈ N be defined by the relations N0h0 ¬ a < (N0 + 1)h0. Write

R1+n
h =

{
(t(r), x(m)) : (r,m) ∈ Z1+n

}
and

Eh = E ∩R1+n
h , Eh.0 = E0 ∩R1+n

h ,

∂0Eh = ∂0E ∩R1+n
h , Bh = B ∩R1+n

h .

Moreover we put

Eh.r = (Eh.0 ∪ Eh) ∩
([
−b0, t(r)

]
×Rn

)
, −K0 ¬ r ¬ N0,

E′h =
{(
t(r), x(m)

)
∈ Eh \ ∂0Eh : 0 ¬ r ¬ N0 − 1

}
,

Ih =
{
t(r) : −K0 ¬ r ¬ N0

}
, I ′h = Ih \

{
t(N0)

}
.

For a function z : Eh.0 ∪ Eh → Rk we write z(r,m) = z
(
t(r), x(m)

)
. Let

ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn, 1 standing on the j-th place, 1 ¬ j ¬ n and
0[n] = (0, . . . , 0) ∈ Rn.

Since equation (1) contains the functional variable z(t,x) which is an el-
ement of the space C(D[t, x],Rk) then we use an interpolating operator
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Th : F(E0.h ∪ Eh,Rk) → C(E0 ∪ E,Rk). For z ∈ F(E0.h ∪ Eh,Rk) we write
(Thz)[r,m] instead of (Thz)(t(r),x(m)). Appropriate assumptions on the operator
Th will be given in Section 3.

Suppose that the function ϕh : Eh.0 ∪ ∂0Eh → Rk, ϕh = (ϕh.1, . . . , ϕh.k)
is given. Write

δ0z = (δ0z1, . . . , δ0zk), F [z](r,m) =
(
F1[z](r,m), . . . , Fk[z](r,m)

)
and

Fi[z](r,m) =
n∑
j=1

fij
(
t(r), x(m), (Thz)[r,m]

) [
sijδjz

(r,m)
i + (1− sij)δjz(r+1,m)

i

]

+gi
(
t(r), x(m), (Thz)[r,m]

)
, i = 1, . . . .k,

where 0 ¬ sij ¬ 1, 1 ¬ i ¬ k, 1 ¬ j ¬ n are given constants. We consider the
difference functional system

δ0z
(r,m) = F [z](r,m) (4)

with initial boundary condition

z(r,m) = ϕ
(r,m)
h on Eh.0 ∪ ∂0Eh. (5)

The difference operators δ0 and δ = (δ1, . . . , δn) are defined in the following
way. Put

δ0z
(r,m) =

1
h0

(
z(r+1,m) − z(r,m)

)
. (6)

If fij
(
t(r), x(m), (Thz)[r,m]

)
 0 then

δjz
(r,m)
i =

1
hj

(
z

(r,m+ej)
i − z(r,m)

i

)
(7)

and
δjz

(r+1,m)
i =

1
hj

(
z

(r+1,m+ej)
i − z(r+1,m)

i

)
. (8)

If fij
(
t(r), x(m), (Thz)[r,m]

)
< 0 then

δjz
(r,m)
i =

1
hj

(
z

(r,m)
i − z(r,m−ej)

i

)
(9)

and
δjz

(r+1,m)
i =

1
hj

(
z

(r+1,m)
i − z(r+1,m−ej)

i

)
. (10)

We have 1 ¬ i ¬ k and 1 ¬ j ¬ n in (7)-(10)
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Our difference functional problems have the following property: each
equation in system (4) contains the parameters si = (si1, . . . , sin), 1 ¬ i ¬ k.
If si = (0, . . . , 0) ∈ Rn for 1 ¬ i ¬ k then (4), (5) reduces to the explicit
difference scheme. It is clear that there exists exactly one solution of problem
(4), (5) in this case. The monograph [16] (Chapter V) contains sufficient con-
ditions for the convergence of the explicit difference methods for first order
partial differential equations.

Initial boundary value problem (4), (5) describes an implicit difference
method in general case. We prove that under natural assumptions on f and
g there exists exactly one solution uh : Eh.0 ∪ Eh → Rk to (4), (5). We give
sufficient conditions for the convergence of implicit difference schemes. The
proof of the stability of the methods is based on a comparison technique. It
is important in our considerations that we assume nonlinear estimates of the
Perron type for given functions with respect to the functional variable.

Note that if k = 1 and s = (s1, . . . , sn) = (1, . . . , 1) ∈ Rn then (4), (5)
reduces to the implicit difference scheme considered in [18].

Difference schemes considered in the papers [24]- [26] depend on two pa-
rameters s, s̃ ∈ [0, 1]. Right hand sides of difference equations corresponding
to parabolic equations contain the expressions

sδz(r,m) + (1− s)δz(r+1,m) and s̃δ(2)z(r,m) + (1− s̃)δ(2)z(r+1,m),

where δ = (δ1, . . . , δn) and δ(2) = [δij ]i,j=1,...,n are difference operators corre-
sponding to the partial derivatives ∂x=(∂x1 , . . . , ∂xn) and ∂xx=[∂xixj ]i,j=1...,n.

3. Solutions of functional differential and difference equations
In this section we prove that there is exactly one solution of functional differ-
ence problem (4), (5). Moreover we give estimates of solutions to functional
differential problem (1), (2) and of solutions to difference method (4), (5).

First we formulate a maximum principle for difference inequalities gener-
ated by (4), (5). Write

Yh = {m ∈ Zn : −b < xm < b}

and

J
(r,m)
i.+ [z] = {j : 1 ¬ j ¬ n and fij

(
t(r), x(m), (Thz)[r,m]

)
 0}, (11)

J
(r,m)
i.− [z] = {1, . . . , n} \ J (r,m)

i.+ [z] (12)

where 1 ¬ i ¬ k.

Theorem 1 Suppose that 0 ¬ r ¬ N0 − 1 is fixed and zh : Eh.r → Rk is
known.
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(I) If zh : Eh.r+1 → Rk, zh = (zh.1, . . . , zh.k), satisfies the difference in-
equalities

z
(r+1,m)
h.i ¬ h0

n∑
j=1

fij
(
t(r), x(m), (Thzh)[r,m]

)
(1−sij)δjz(r+1,m)

h.i , 1 ¬ i ¬ k,

for m ∈ Yh and µ(i) ∈ Zn, µ(i) =
(
µ

(i)
1 , . . . , µ

(i)
n

)
,

is such that z
(r+1,µ(i))
h.i = M (i) for 1 ¬ i ¬ k, where

M (i) = max
{
z

(r+1,m)
h.i : −K < m < K

}
and M (i) > 0, (13)

then
(
t(r+1), x(µ(i))

)
∈ ∂0Eh.

(II) If zh : Eh.r+1 → Rk, zh = (zh.1, . . . , zh.k), satisfies the difference in-
equalities

z
(r+1,m)
h.i  h0

n∑
j=1

fij
(
t(r), x(m), (Thzh)[r,m]

)
(1−sij)δjz(r+1,m)

h.i , 1 ¬ i ¬ k,

for m ∈ Yh and µ̃(i) ∈ Zn, µ̃(i) =
(
µ̃

(i)
1 , . . . , µ̃

(i)
n

)
,

is such that z
(r+1,µ̃(i))
h.i = M̃ (i) for 1 ¬ i ¬ k, where

M̃ (i) = min
{
z

(r+1,m)
h.i : −K < m < K

}
and M̃ (i) < 0,

then
(
t(r+1), x(µ̃(i))

)
∈ ∂0Eh. 2

Proof Consider the case (I). Suppose that i is fixed, 1 ¬ i ¬ k, and that(
t(r+1), x(µ(i))

)
∈ Eh \ ∂0Eh. Then using definitions (8), (10) of difference

operators δ = (δ1, . . . , δn) with zh instead of z we have

z
(r+1,µ(i))
h.i

¬ h0
∑

j∈J(r,m)i.+ [zh]

1
hj
fij
(
t(r), x(µ(i)), (Thzh)[r,µ(i)]

)
(1− sij)

[
z

(r+1,µ(i)+ej)
h.i − z(r+1,µ(i))

h.i

]
+ h0

∑
j∈J(r,m)i.− [zh]

1
hj
fij
(
t(r), x(µ(i)), (Thzh)[r,µ(i)]

)
(1− sij)

[
z
(r+1,µ(i))
h.i − z(r+1,µ(i)−ej)

h.i

]
.

This gives

z
(r+1,µ(i))
h.i

1 + h0

n∑
j=1

1
hj

(1− sij)
∣∣∣fij (t(r), x(µ(i)), (Thzh)[r,µ(i)]

)∣∣∣




A. Szafrańska 233

¬ h0
∑

j∈J(r,m)i.+ [zh]

1
hj
fij
(
t(r), x(µ(i)), (Thzh)[r,µ(i)]

)
(1− sij)z

(r+1,µ(i)+ej)
h.i

−h0
∑

j∈J(r,m)i.− [zh]

1
hj
fij
(
t(r), x(µ(i)), (Thzh)[r,µ(i)]

)
(1− sij)z

(r+1,µ(i)−ej)
h.i

¬ h0M
(i)

n∑
j=1

1
hj

(1− sij)
∣∣∣fij (t(r), x(µ(i)), (Thzh)[r,µ(i)]

)∣∣∣ .
Then we get z

(r+1,µ(i))
h.i ¬ 0, which contradicts (13). Then

(
t(r+1), x(µ(i))

)
∈

∂0Eh which is our claim. In a similar way we prove that
(
t(r+1), x(µ̃(i))

)
∈

∂0Eh for 1 ¬ i ¬ k in the case (II). This completes the proof. �

Lemma 1 Suppose that f : E ×C(B,Rk)→ Rk×n, g : E ×C(B,Rk)→ Rk

and h ∈ H. Then difference functional problem (4), (5) with δ0 and δ defined
by (6)-(10) has exactly one solution uh : Eh.0 ∪ Eh → Rk. 2

Proof Suppose that 0 ¬ r ¬ N0 − 1 is fixed and uh : Eh.r → Rk is known.
Then (4), (5) is the linear system from which we can calculate u(r+1,m)

h for(
t(r+1), x(m)

)
∈ Eh \ ∂0Eh. The homogeneous problem corresponding to (4),

(5) for 1 ¬ i ¬ k has the following form

z
(r+1,m)
i = h0

n∑
j=1

(1− sij)fij
(
t(r), x(m), (Thuh)[r,m]

)
δjz

(r+1,m)
i , (14)

z(r+1,m) = 0 on Eh.0 ∪ ∂0Eh. (15)

It follows from Theorem 1 that system (14), (15) has exactly one zero solution.
Therefore the problem (4), (5) has exactly one solution. Then the numbers
u

(r+1,m)
h for

(
t(r+1), x(m)

)
∈ Eh \ ∂0Eh exist and they are unique. Since uh is

given on Eh.0 then the proof is completed by induction. �

We give estimates of solutions to (4), (5). For z ∈ C(E0 ∪ E,Rk) and
zh ∈ F(Eh.0 ∪ Eh,Rk) we define the seminorms

‖z‖t = max {‖z(τ, s)‖∞ : (τ, s) ∈ (E0 ∪ E) ∩ ([−b0, t]×Rn)}, 0 ¬ t ¬ a,

‖zh‖h.r = max {‖zh(τ, s)‖∞ : (τ, s) ∈ Eh.r}, 0 ¬ r ¬ N0.

We need the following assumptions.

Assumption H[%]. The function % : [0, a] × R+ → R+ is continuous and
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nondecreasing with respect to both variables. Moreover for each η ∈ R+ the
maximal solution of the initial problem

ω′(t) = %(t, ω(t)), ω(0) = η. (16)

exists on [0, a].

Assumption H[f, g, ϕ]. The functions f : E × C(B,Rk) → Rk×n and
g : E × C(B,Rk)→ Rk are continuous and satisfy the condition (V) and

1) there is function % : [0, a] × R+ → R+ such that Assumption H[%] is
satisfied and

‖g(t, x, w)‖∞ ¬ %(t, ‖w‖B) for (t, x, w) ∈ E × C(B,Rk),

2) ϕ ∈ C(E0 ∪ ∂0E,R
k) and ϕh ∈ F(Eh.0 ∪ ∂0Eh,R

k) and there is α0 :
∆→ R+ such that∥∥∥ϕ(r,m) − ϕ(r,m)

h

∥∥∥
∞
¬ α0(h) on Eh.0 ∪ ∂0Eh and lim

h→0
α0(h) = 0.

Remark 1 Suppose that Assumption H[f, g, ϕ] is satisfied. Then there is
η̄ ∈ R+ such that

‖ϕ(t, x)‖∞ ¬ η̄ on E0 and ‖ϕ(t, x)‖∞ ¬ ω(t, η̄) on ∂0E,

where ω( · , η̄) is the maximal solution to (16) with η = η̄. Moreover, there is
η̃ ∈ R+ such that∥∥∥ϕ(r,m)

h

∥∥∥
∞
¬ η̃ on Eh.0 and

∥∥∥ϕ(r,m)
h

∥∥∥
∞
¬ ω

(
t(r), η̃

)
on ∂0Eh

where ω( · , η̃) is the maximal solution to (16) with η = η̃. 2

Lemma 2 If Assumption H[f, g, ϕ] is satisfied and z̄ : E0 ∪ E → Rk is a
solution to (1), (2) and z̄ is of class C1 then

‖z̄(t, x)‖∞ ¬ ω(t, η̄) (17)

where ω(·, η̄) is a solution to (16) with η = η̄ and η̄ is defined in Remark 1.2

Proof Write ξ(t) = ‖z̄‖t, t ∈ [0, a]. Let us denote by ω(·, η̄, ε) the maximal
solution of the initial problem

ω′(t) = %(t, ω(t)) + ε, ω(0) = η̄ + ε

where ε > 0. There is ε̃ > 0 such that for 0 < ε < ε̃ the solution ω(·, η̄, ε) is
defined on [0, a] and

lim
ε→0

ω(·, η̄, ε) = ω(·, η̄) uniformly on [0, a].
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We prove that
ξ(t) < ω(t, η̄, ε) (18)

for t ∈ [0, a] and 0 < ε < ε̃. Suppose by contradiction that this inequality
fails to be true. Then there is t̃ ∈ (0, a) such that for t ∈ [0, t̃) we have
ξ(t) < ω(t, η̄, ε) and ξ(t̃) = ω(t̃, η̄, ε). Moreover there exists x̃ = (x̃1, . . . , x̃n) ∈
[−b, b] and i ∈ {1, . . . , k} such that ξ(t̃) = |z̄i(t̃, x̃)|. Then two possibilities
can happen, either (i) z̄i(t̃, x̃) = ω(t̃, η̄, ε) or (ii) z̄i(t̃, x̃) = −ω(t̃, η̄, ε). Let us
consider the case (i). Then we have

D−ξ
(
t̃
)
 ω′

(
t̃, η̄, ε

)
(19)

where D− is the left-hand lower Dini derivative. It is clear that ∂xz̄i(t̃, x̃) =
0[n] and consequently from Assumption H[g, ϕ] we have

D−ξ
(
t̃
)
¬ ∂tz̄i

(
t̃, x̃
)
¬ %

(
t̃, ω

(
t̃, η̄, ε

))
< ω′

(
t̃, η̄, ε

)
which contradicts (19). The case (ii) can be treated in a similar way. Hence
estimate (18) follows. Letting ε tend to zero in (18) we obtain the estimation
(17). This completes the proof. �

Assumption H[Th]. The operator Th : F(E0.h ∪ Eh,Rk) → C(E0 ∪ E,Rk)
satisfies the conditions:

1) for z, z̃ ∈ F(E0.h ∪ Eh,Rk) we have

‖Th[z]− Th[z̃]‖t(r) ¬ ‖z − z̃‖h.r, 0 ¬ r ¬ K, (20)

2) if z : E0 ∪ E → R is of class C1 then there is γ? : ∆→ R+ such that

‖Th[zh]− z‖t ¬ γ?(h) for t ∈ [0, a] and lim
h→0

γ?(h) = 0, (21)

where zh is the restriction of z to the set E0.h ∪ Eh.

Lemma 3 Suppose that Assumptions H[f, g, ϕ] and H[Th] are satisfied and
for (t, x, w) ∈ Eh × C(B,Rk) we have

1− h0

n∑
j=1

1
hj
sij |fij(t, x, w)|  0, 1 ¬ i ¬ k. (22)

Then if uh : E0.h ∪ Eh → Rk is a solution of (4), (5) we have∥∥∥u(r,m)
h

∥∥∥
∞
¬ ω

(
t(r), η̃

)
on Eh (23)

where ω(·, η̃) is a maximal solution to (16) for η = η̃ and η̃ is defined in
Remark 1. 2
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Proof We conclude from (4) and from definitions of difference operators
(6)-(10) that

u
(r+1,m)
h.i

1 + h0

n∑
j=1

1
hj

(1− sij)
∣∣∣fij (t(r), x(m), (Thuh)[r,m]

)∣∣∣
 (24)

= u
(r,m)
h.i

1− h0

n∑
j=1

1
hj
sij |fij(t(r), x(m), (Thuh)[r,m])|


+h0

∑
j∈J(r,m)i.+ [uh]

1
hj
fij
(
t(r), x(m), (Thuh)[r,m]

) (
siju

(r,m+ej)
h.i + (1− sij)u

(r+1,m+ej)
h.i

)

−h0
∑

j∈J(r,m)i.− [uh]

1
hj
fij
(
t(r), x(m), (Thuh)[r,m]

) (
siju

(r,m−ej)
h.i + (1− sij)u

(r+1,m−ej)
h.i

)

+h0gi
(
t(r), x(m), (Thuh)[r,m]

)
,
(
t(r), x(m)

)
∈ E′h.

Let us define λh : Ih → R+ by λ
(r)
h = ‖uh‖h.r, 0 ¬ r ¬ N0. It follows from

condition 1) of Assumption H[f, g, ϕ] and from (24) that

λ
(r+1)
h ¬ λ(r)

h + h0%(t(r), λ(r)
h ), 0 ¬ r ¬ N0 − 1. (25)

Based on Remark 1 we have λ(0)
h ¬ η̃. The maximal solution ω(·, η̃) of (16)

is a convex function therefore satisfies the recurrent difference inequality

ω
(
t(r+1), η̃

)
 ω

(
t(r), η̃

)
+ h0%

(
t(r), ω(t(r), η̃)

)
, 0 ¬ r ¬ N0 − 1.

It follows from above and from (25) that λ(r)
h ¬ ω(t(r), η̃) for 0 ¬ r ¬ N0.

This proves (23). This completes the proof. �

Remark 2 The assumption (22) is called the Courant-Friedrichs-Lévy con-
dition for problem (4)-(5) (see [14] Chapter III and [16] Chapter V). 2

4. Convergence of difference methods Let η∗ = max {η̄, η̃} where η̄
and η̃ are defined in Remark 1. Set

ΩC =
{

(t, x, w) ∈ E × C(B,Rk) : ‖w‖B ¬ C
}

where C = ω(a, η∗) and ω(·, η∗) is a solution of (16) with η = η∗.
To prove the convergence of functional difference problem (4), (5) we need

the following additional assumptions.

Assumption H[f, g, σ]. Suppose that
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1) there is σ : [0, a]×R+ → R+ such that

(i) σ is continuous and nondecreasing with respect to both variables,

(ii) σ(t, 0) = 0 for t ∈ [0, a] and for each c  1 the maximal solution
of the Cauchy problem

w′(t) = cσ(t, w(t)), w(0) = 0, (26)

is ω̃(t) = 0 for t ∈ (0, a),

2) for each (t, x, w) ∈ E × C(B,Rk) we have

xjfij(t, x, w)  0, 1 ¬ j ¬ n, 1 ¬ i ¬ k,

3) the estimates

‖f(t, x, w)− f(t, x, w̄)‖ ¬ σ(t, ‖w − w̄‖B), (27)

‖g(t, x, w)− g(t, x, w̄)‖∞ ¬ σ(t, ‖w − w̄‖B) (28)

are satisfied on ΩC .

Remark 3 It is important that we have assumed nonlinear estimates of Per-
ron type (27) and (28) on ΩC . There are differential equations with deviated
variables and differential integral equations such that condition 2) of Assump-
tion H[f, g, σ] is satisfied and global estimates for f and g are not satisfied.
We give comments on such equations. 2

Suppose that the functions f̃ : E ×Rk → Rk×n, f̃ = [f̃ij ]i=1,...,k,j=1,...,n ,
g̃ = (g̃1, . . . , g̃k) : E ×Rk → Rk of the variables (t, x, p) are continuous and

(i) there exist the derivatives ∂pi f̃ = (∂pi f̃1, . . . , ∂pi f̃n), ∂pi g̃, 1 ¬ i ¬ k,
and ∂pf̃ ∈ C(E ×Rk,Rk×n), ∂pg̃ ∈ C(E ×Rk,Rk),

(ii) the function ∂pf̃ and ∂pg̃ are unbounded on E × Rk and there are
α̃, β̃ ∈ R+ such that

‖g̃(t, x, p)‖∞ ¬ α̃‖p‖∞ + β̃ on E ×Rk.

Assume that ψ ∈ C(E,R1+n), ψ = (ψ0, ψ1, . . . , ψn), is a given func-
tion and ψ(t, x) ∈ E for (t, x) ∈ E and ψ0(t, x) ¬ t for (t, x) ∈ E. Then
(ψ(t, x)− (t, x)) ∈ B for (t, x) ∈ E. Let f : E × C(B,Rk) → Rk×n and
g : E × C(B,Rk)→ Rk be defined by

f(t, x, w) = f̃ (t, x, w(ψ(t, x)− (t, x))) , g(t, x, w) = g̃ (t, x, w(ψ(t, x)− (t, x))) .
(29)
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Then (1) reduces to the system of differential equations with deviated vari-
ables

∂tzi(t, x) =
n∑
j=1

f̃ij(t, x, z(ψ(t, x))∂xjzi(t, x) + g̃(t, x, z(ψ(t, x))), 1 ¬ i ¬ k.

It follows that there is L ∈ R+ such that the functions given by (29) satisfy
Assumption H[f, g, σ] with σ(t, p) = Lp, (t, p) ∈ [0, a] × R+, and the global
Lipschitz condition with respect to the functional variable is not satisfied.

For the above f̃ and g̃ we put

f(t, x, w)= f̃

(
t, x,

∫
D[t,x]

w(τ, s) dτds

)
, (30)

g(t, x, w)= g̃

(
t, x,

∫
D[t,x]

w(τ, s) dτds

)
.

Then (1) reduces to the system of differential integral equations

∂tzi(t, x) =
n∑
j=1

f̃ij

(
t, x,

∫
D[t,x]

z(τ, s) dτ ds

)
∂xjzi(t, x)

+ g̃

(
t, x,

∫
D[t,x]

z(τ, s) dτ ds

)
, 1 ¬ i ¬ k.

It is clear that there is L ∈ R+ such that the functions given by (30) satisfy
Assumption H[f, g, σ] with σ(t, p) = Lp, (t, p) ∈ [0, a] × R+, and the global
Lipschitz condition with respect to the functional variable is not satisfied.

Now we conduct an analysis of the convergence of the difference method
(4), (5).

Theorem 2 Suppose that Assumptions H[f, g, σ], H[f, g, ϕ] and H[Th] are
satisfied and

1) v : E0∪E → Rk is a solution to (1), (2) and v is of class C1 on E0∪E
and vh is the restriction of v to Eh.0 ∪ Eh,

2) for (t, x, w) ∈ E × C(B,Rk) we have

1− h0

n∑
j=1

1
hj
sij |fij(t, x, w)|  0, 1 ¬ i ¬ k, (31)

3) there is c0 ∈ R+ such that the following estimate∥∥∥δjv(r,m)
h

∥∥∥
∞
¬ c0 (32)

is satisfied for 1 ¬ j ¬ n. 2
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Then there is exactly one solution uh : Eh.0 ∪Eh → Rk to (1), (2) and there
is α : H → R+ such that∥∥∥v(r,m)

h − u(r,m)
h

∥∥∥
∞
¬ α(h) and lim

h→0
α(h) = 0. (33)

Proof It follows from Lemma 1 that there is exactly one solution to (4),
(5). We prove (33). Let Γh : E′h → Rk be defined by the relation

δ0v
(r,m)
h = F [vh](r,m) + Γ(r,m)

h . (34)

There is γ : H → R+ such that∥∥∥Γ(r,m)
h

∥∥∥
∞
¬ γ(h) on E′h and lim

h→0
γ(h) = 0. (35)

Put P [z](r,m) = (t(r), x(m), (Thz)[r,m]). Write φh = vh − uh then from (4) and
(34) we have

φ
(r+1,m)
h.i = φ

(r)
h.i + h0

n∑
j=1

fij
(
P [uh](r,m)

) [
sijδjφ

(r,m)
h.i (36)

+(1− sij)δjφ(r+1,m)
h.i

]
+ Λ(r,m)

h.i

where 1 ¬ i ¬ k and
Λ(r,m)
h.i =

= h0

n∑
j=1

(
fij
(
P [vh](r,m)

)
− fij

(
P [uh](r,m)

)) [
sijδjv

(r,m)
h.i + (1− sij)δjv(r+1,m)

h.i

]
+h0

(
gi
(
P [vh](r,m)

)
− gi(P [uh](r,m))

)
+ h0Γ(r,m)

h.i .

From above and from (7)-(10) we get

φ
(r+1,m)
h.i

1 + h0

n∑
j=1

1
hj

(1− sij)
∣∣∣fij (P [uh](r,m)

)∣∣∣
 (37)

= φ
(r,m)
h.i

[
1− h0

n∑
i=1

1
hj
sij
∣∣∣fij (P [uh](r,m)

)∣∣∣]

+h0
∑

j∈J(r,m)i.+ [uh]

1
hj
fij
(
P [uh](r,m)

) [
sijφ

(r,m+ej)
h.i + (1− sij)φ

(r+1,m+ej)
h.i

]

−h0
∑

j∈J(r,m)i.− [uh]

1
hj
fij
(
P [uh](r,m)

) [
sijφ

(r,m−ej)
h.i + (1− sij)φ

(r+1,m−ej)
h.i

]
+Λ(r,m)

h.i
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where J (r,m)
i.+ [uh] and J

(r,m)
i.− [uh] are defined by (11), (12). Set λ(r)

h = ‖φh‖h.r,
0 ¬ r ¬ N0. Then it follows from Assumptions H[Th], H[f, g, σ] and the
assumptions of Theorem 4.1 that λh satisfies the recurrent inequality

λ
(r+1)
h ¬ λ(r)

h + h0(1 + nc0)σ(t(r), λ(r)
h ) + h0γh, 1 ¬ r ¬ N0 − 1. (38)

From condition 2) of Assumption H[f, g, ϕ] we have λ
(0)
h ¬ α0(h). Let us

denote by ω(·, h) the maximal solution of the following initial problem

ω′(t) = (1 + nc0)σ(t, ω(t)) + γ(h), ω(0) = α0(h). (39)

Then ω(·, h) is defined on [0, a] and

lim
h→0

ω(t, h) = 0 uniformly on [0, a].

It follows from condition 1) of Assumption H[f, g, σ] that ω(·, h) is convex
and satisfies the recurrent difference inequality

ω
(
t(r+1), h

)
 ω

(
t(r), h

)
+ h0σ

(
t(r), ω(t(r), h)

)
+ h0γ(h),

where 1 ¬ r ¬ N0 − 1. From above and from (38) we get

λ
(r)
h ¬ ω

(
t(r), h

)
, 1 ¬ r ¬ N0.

Then the condition (33) is satisfied with α(h) = ω(a, h). This completes the
proof. �

Remark 4 The classical solutions of the functional differential problem (1),
(2) are approximate solutions to the problem (4), (5). Then the assumption
(32) of Theorem 2 is satisfied. 2

Now we give error estimate for difference method (4), (5). First we intro-
duce an example of the operator Th satisfying Assumption H[Th]. Put

S∗ = {(j, s) : j ∈ {0, 1}, s = (s1, . . . , sn), si ∈ {0, 1} for 1 ¬ i ¬ n}.

Let w ∈ F (Eh.0 ∪ Eh,Rk) and (t, x) ∈ E0 ∪ E. There exists (t(r), x(m)) ∈
Eh.0 ∪ Eh such that

t(r) ¬ t ¬ t(r+1), x(m) ¬ x ¬ x(m+1), (t(r+1), x(m+1)) ∈ Eh.0 ∪ Eh.

We define

(Thw)(t, x) =
∑

(j,s)∈S∗

w(r+j,m+s)

(
Y − Y (r,m)

h

)(j,s)

×
(

1− Y − Y (r,m)

h

)1−(j,s)
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where (
Y − Y (r,m)

h

)(j,s)

=

(
t− t(r)

h0

)j n∏
k=1

(
xk − x

(mk)
k

hk

)sk
and(

1− Y − Y (r,m)

h

)1−(j,s)

=

(
1− t− t(r)

h0

)1−j n∏
k=1

(
1−

xk − x
(mk)
k

hk

)1−sk

and we take 00 = 1 in the above formulas. It is easy to see that Thw ∈
C(E0 ∪ E,Rk). The above interpolating operator has been defined in [16],
Chapter 5.

Theorem 3 Suppose that

1) all assumptions of Theorem 2 are satisfied with σ(t, p) = Lp and the
solution v : E0∪E → Rk of differential problem (1), (2) is of class C2,

2) the constant C̃ > 0 is such that

‖∂tv(t, x)‖∞, ‖∂xjv(t, x)‖∞ ¬ C̃ on E0 ∪ E,

‖∂ttv(t, x)‖∞ ¬ C̃, ‖∂txjv(t, x)‖∞ ¬ C̃,
‖∂xjxkv(t, x)‖∞ ¬ C̃ on E0 ∪ E,

where 1 ¬ j, k ¬ n, and there exists d̃ ∈ R+ such that

‖f(t, x, w)‖ ¬ d̃ on E × C(B,Rk).

Then ∥∥∥u(r,m)
h − v(r,m)

h

∥∥∥
∞
¬ ᾱ(h) on Eh (40)

where vh is a restriction of v to Eh.0 ∪ Eh and

ᾱ(h) = α0(h)eLC̃a + γ(h)
eLC̃a − 1

LC̃
,

γ(h) = C̃

[
1
2
h0 + (1 + ‖h′‖) d̃

]
+ LC̃(1 + C̃)‖h‖2

where h = (h0, h
′) = (h0, h1, . . . , hn). 2

Proof From assumptions of the Theorem we conclude that the difference
operators δ0 and δ satisfy the conditions∥∥∥δ0v

(r,m)
h − ∂tv(r,m)

∥∥∥
∞
¬ 1

2
C̃h0, (41)
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∥∥∥δjv(r,m)
h − ∂xjv(r,m)

∥∥∥
∞
¬ 1

2
C̃‖h′‖, 1 ¬ j ¬ n. (42)

We have
Γ(r,m)
h.i = δ0v

(r,m)
h.i − ∂tv(r,m)

i

+
n∑
j=1

fij
(
t(r), x(m), (Thvh)[r,m]

) [
sijδjv

(r,m)
h.i + (1− sij)δjv(r+1,m)

h.i

]

−
n∑
j=1

fij
(
t(r), x(m), v(t(r),x(m))

)
∂xjv

(r,m)
i

+gi
(
t(r), x(m), (Thvh)[r,m]

)
− gi

(
t(r), x(m), v(t(r),x(m))

)
, 1 ¬ i ¬ k.

It follows from Theorem 5.27 in [16] that there is C̃ ∈ R+ such that

‖Thvh − v‖B ¬ C̃‖h‖2. (43)

From Assumption H[f, g, σ] and from estimates (41)-(43) we get

‖Γ(r,m)
h ‖∞ ¬ γ(h).

Then the inequality (40) is obtained by solving problem (39) with σ(t, p) =
Lp. This completes the proof. �

5. Numerical examples

Example 1 For n = 1 and k = 2 we define

E = [0, 0.25]× [−1, 1], E0 = {0} × [−1, 1].

Consider quasilinear system of differential integral equations with deviated
variables

∂tz1(t, x) =
[
1 + sin

(
tet
∫ x

0
z1(t, τ)dτ + t

∫ x

0
z2(t, τ)dτ , (44)

−etx + e−tx
)]
∂xz1(t, x)

+ z1(t, 0.5x) cos
(
(x− 1)

∫ t

0
z1(τ, x)dτ + 1− z1(t, x)

)
+ z1(t, x)

(
x− t− 1− z2(t, x)e0.5tx

)
,

∂tz2(t, x) =
[
1 + cos

(
z1(t, 0.5x)z2(0.5t, x)− e−t

)]
∂xz2(t, x) (45)

+ x

∫ t

0
z2(τ, x)dτ sin

(
z2(0.5t, x)− e−0.5tx +

π

2

)
+ z2(t, x)(2t− x+ 1)− 1
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with initial boundary conditions

(z1(0, x), z2(0, x)) = (1, 1), x ∈ [−1, 1],
(z1(t, 1), z2(t, 1)) = (1, et), t ∈ [0, 0.25].

(46)

The exact solution of this problem is known. It is z(t, x) = (z1(t, x), z2(t, x)) =(
et(x−1), e−tx

)
. 2

To approximate solutions of the above differential problem we consider
the following discretization of equations (44), (45)

z
(r+1,m)
1 = z

(r,m)
1 + h0

[
1 + sin

(
t(r)et

(r)
∫ x(m)

0
z1(t(r), τ)dτ (47)

+t(r)
∫ x(m)

0
z2(t(r), τ)dτ − et(r)x(m) + e−t

(r)x(m)
)]

×
(
s11δz

(r,m)
1 + (1− s11)δz(r+1,m)

1

)
+z1(t(r), 0.5x(m))

× cos

(
(x(m) − 1)

∫ t(r)

0
z1(τ, x(m))dτ + 1− z(r,m)

1

)
+z(r,m)

1

(
x(m) − t(t) − 1− z2(t(r), x(m))e0.5t(r)x(m)

)
,

z
(r+1,m)
2 = z

(r,m)
2 + h0

[
1 + cos

(
z1(t(r), 0.5x(m))z2(0.5t(r), x(m)) (48)

−e−t(r)
)] (

s21δz
(r,m)
2 + (1− s21)δz(r+1,m)

2

)
+x(r)

∫ t(r)

0
z2(τ, x(m))dτ

× sin
(
z2(0.5t(r), x(m))− e−0.5t(r)x(m) +

π

2

)
+z(r,m)

2 (2t(r) − x(m) + 1)− 1,

with a discrete initial boundary condition corresponding to (46). For a sim-
plicity let us put s = s11 = s21. If we take s = 1 in (47) and (48), we get
explicit difference method. If s = 0 we will say that we have strong implicit
difference method.

Let us denote by zh = (zh.1, zh.2) the solution to (47), (48) with a dis-
crete initial boundary condition. The following tables show maximal values
of errors for several step sizes with respect to the value of parameter s.

Note that for steps which satisfy the CFL condition (Table 1) explicit
method gives the best results and the strong implicit method gives the worse
results.
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Table 1: Maximal values of errors

(h0, h1) zh s = 1 s = 0.75 s = 0.5 s = 0(
2−8, 2−6

)
zh.1 4.30455 · 10−3 4.47828 · 10−3 4.65205 · 10−3 4.99970 · 10−3

zh.2 3.00355 · 10−4 1.03621 · 10−3 1.77098 · 10−3 3.23726 · 10−3

(2−10, 2−9) zh.1 5.18508 · 10−3 5.22908 · 10−3 5.27309 · 10−3 5.36111 · 10−3

zh.2 8.64527 · 10−5 2.78026 · 10−4 4.69525 · 10−4 8.52301 · 10−4

(2−12, 2−9) zh.1 5.44808 · 10−3 5.45912 · 10−3 5.47017 · 10−3 5.49226 · 10−3

zh.2 1.12365 · 10−5 5.95956 · 10−5 1.07950 · 10−4 2.04645 · 10−4

Table 2: Maximal values of errors, violated CFL condition

(h0, h1) zh s = 1 s = 0.75 s = 0.5 s = 0

(2−5, 2−8) zh.1 5.21595 · 100 3.63995 · 10−3 3.11675 · 10−3 5.95879 · 10−3

zh.2 2.48934 · 103 7.50288 · 10−3 1.05245 · 10−2 1.82619 · 10−3

(2−6, 2−8) zh.1 4.34715 · 1026 5.65002 · 10−3 1.83288 · 10−3 3.56439 · 10−3

zh.2 2.39661 · 1010 3.46226 · 10−1 6.46328 · 10−3 1.14059 · 10−2

(2−8, 2−10) zh.1 ∞ 6.98941 · 10175 4.47489 · 10−3 4.82136 · 10−3

zh.2 ∞ 1.99341 · 1012 1.86107 · 10−3 3.32952 · 10−3

(2−9, 2−11) zh.1 ∞ ∞ 4.99253 · 10−3 5.16759 · 10−3

zh.2 ∞ ∞ 9.51809 · 10−4 1.70690 · 10−3

In the case when the CFL condition is violated (table 2) the explicit
difference scheme is divergent, implicit difference method with s = 0.75 is not
stable. We get the best results for implicit difference scheme with s = 0.5.

Example 2 For n = 2 and k = 1 we define

Ẽ = [0, 0.25]× [−1, 1]× [−1, 1], Ẽ0 = {0} × [−1, 1]× [−1, 1].

Consider differential equation with deviated variables

∂tz(t, x, y) = [1 + cos (z(t, 0.5(x+ y), 0.5(x− y)))] ∂xz(t, x, y)

− [1 + sin (z(0.5t, 0.5x, 0.5y))] ∂yz(t, x, y) + (z(0.5t, 0.5x, 0.5y))8

+z(t, x, y)
[
xy − 1− ty

(
1 + cos

(
e0.25t(x2−y2)

))
+ tx

(
1 + sin

(
e0.125txy

))]
with initial boundary condition

z(0, x, y) = 1, (x, y) ∈ [−1, 1]× [−1, 1],

z(t, 1, y) = cos(ty), t ∈ [0, 0.25], y ∈ [−1, 1],

z(t, x,−1) = cos(tx), t ∈ [0, 0.25], x ∈ [−1, 1].

The exact solution of this problem is known. It is z(t, x, y) = cos (t(1− x+ y)).2



A. Szafrańska 245

In this case we have i ∈ {1} and j ∈ {1, 2} therefore in a difference
method for above differential equation we approximate partial derivatives in
the following way

∂xz(t, x, y) ≈ 1
h1

[
s11

(
z(r,m1+1,m2) − z(r,m1,m2)

)
+ (1− s11)

(
z(r+1,m1+1,m2) − z(r+1,m1,m2)

)]
,

∂yz(t, x, y) ≈ 1
h2

[
s12

(
z(r,m1,m2) − z(r,m1,m2−1)

)
+ (1− s12)

(
z(r+1,m1,m2) − z(r+1,m1,m2−1)

)]
.

In the given results for a simplicity we also adopted s11 = s12 = s. The
following tables show maximal values of errors for several step sizes with
respect to the value of parameter s. From Tables 3 and 4 we get the same

Table 3: Maximal values of errors

(h0, h1, h2) s = 1 s = 0.75 s = 0.5 s = 0(
2−6, 2−4, 2−4

)
4.38177 · 10−4 2.05186 · 10−3 3.79256 · 10−3 7.17073 · 10−3(

2−9, 2−6, 2−6
)

5.22318 · 10−5 3.01896 · 10−4 5.86684 · 10−4 1.15029 · 10−3(
2−10, 2−7, 2−7

)
2.68465 · 10−5 1.77695 · 10−4 3.07460 · 10−4 6.02534 · 10−4

Table 4: Maximal values of errors, violated CFL condition

(h0, h1, h2) s = 1 s = 0.75 s = 0.5 s = 0(
2−5, 2−7, 2−7

)
2.68595 · 102 7.85583 · 10−3 8.19253 · 10−3 1.40493 · 10−2(

2−6, 2−8, 2−8
)

5.01513 · 1012 1.12682 · 100 4.85345 · 10−3 8.56825 · 10−3(
2−7, 2−9, 2−9

)
2.12815 · 1033 1.88982 · 105 2.63901 · 10−3 4.74880 · 10−3(

2−9, 2−9, 2−9
)

∞ 8.19579 · 1012 6.86236 · 10−4 1.27756 · 10−3

conclusions as in example 1.

Example 3 We apply our weighted difference method for the numerical sim-
ulation of the model for the dynamics of cells populations in the CFSE pro-
liferation assay ( [23]). For n = k = 1 we define

E = [0, T ]× [xmin, xmax], E0 = 0× [xmin, xmax].

Consider the one-dimensional hyperbolic partial differential equation with
deviated argument

∂tz(t, x)− v(x)∂xz(t, x) = −(α(x) + β(x))z(t, x) (49)

+ 1[xmin,xmax/γ](x)2γα(γx)z(t, γx).
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Equation (49) describes the evolution of the cell distribution z(t, x). Cells are
structured according to a variable x that denotes the CFSE (carboxyfluores-
cein succinimidyl ester) expression level. The function v describes the label
loss rate and the nonnegative functions α and β represent the proliferation
and death rates, respectively. Let the initial CFSE distribution of cells is
given by the function

z(0, x) = (x− 0.75)3(1.5− x)2(3− x)31[0.75,3] on E0,

and we assume the boundary condition z(t, xmax) = 0, t > 0, what means
the lack of cells with CFSE intensity above xmax for all t > 0. 2

In the numerical analysis we put T = 2 and [xmin, xmax] = [0, 4]. We take
the label dilution factor γ = 2 and we assume that the natural label loss
is proportional to the amount of label v(x) = 0.11x. We consider the case
with no cellular death (β(x) ≡ 0) and we take the size-specific division rate
function

α(x) = (x− 0.25)2(1− x)31[0.25,1].

Note that the CFL condition has the form h0
h1
svmax < 1, where vmax =

max {v(x) : x ∈ [0, 4]}.
In order to compare our results we compute the solution at the final time

for small step increments: (h0, h1) = (2−11, 2−9) and we confront this results
for numerical solutions calculated on the grids corresponding to the larger
steps.

Table 5 contains the maximal errors for different values of s. All methods
are stable and produce a good approximation of analytical solution. The best
results we obtain for explicit method (s = 1).

Table 5: Maximal values of errors

(h0, h1) s = 1 s = 0.75 s = 0.5 s = 0(
2−7, 2−5

)
4.4194 · 10−2 4.5337 · 10−2 4.6472 · 10−2 4.8719 · 10−2(

2−8, 2−6
)

2.1919 · 10−2 2.2560 · 10−2 2.3200 · 10−2 2.4474 · 10−2(
2−9, 2−7

)
9.6783 · 10−3 1.0020 · 10−2 1.0362 · 10−2 1.1044 · 10−2

In Table 6 we present results for the step increments (h0, h1) which cause
violation of condition CFL. The function z reflects density of cells therefore we
expect to obtain positive numerical approximation. In the case for s ∈ (0.5, 1]
we loose positivity of function z, even in the situations when we obtain small
maximal error, like for s = 0.75. Again, we can deduce that the best results
are produced by applying the weighted numerical method for s = 0.5.
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Table 6: Maximal values of errors, violated CFL condition

(h0, h1) s = 1 s = 0.75 s = 0.5 s = 0(
2−2, 2−6

)
4.4112 · 10−1 2.4512 · 10−2 2.3824 · 10−2 8.9754 · 10−2(

2−3, 2−7
)

2.6794 · 105 1.3406 · 10−2 1.0521 · 10−2 4.9951 · 10−2(
2−4, 2−8

)
1.6847 · 1019 2.0732 · 10−2 3.6791 · 10−3 2.5244 · 10−2(

2−5, 2−9
)

5.0894 · 1048 1.0734 · 105 4.5540 · 10−4 1.1490 · 10−2

0 0.5 1 1.5 2 2.5 3 3.5 4
−3

−2

−1

0

1

2

3
x 10

5

 

 
ES
WDM

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

 

 
ES
WDM

2.2 2.3 2.4 2.5

−0.01

0

0.01

0.02

 

 

(a) s = 1 (b) s = 0.75

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 
ES
WDM

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 
ES
WDM

(c) s = 0.5 (d) s = 0

Figure 1: Results obtained by weighted numerical method (WMD) for (49)
with step increments (h0, h1) = (2−3, 2−7) at the final time T = 2. By ES we
denote the solution calculated for a very small steps.

Remark 5 The all examples show that the difference method which we
present in the paper is unconditionally stable for s ∈ [0, 0.5]. For s ∈ (0.5, 1]
we need CFL conditions on the mesh (compare with the analysis in [27]). 2

6. Conclusions We considered weighted numerical methods for hy-
perbolic quasilinear partial differential equations. The complete convergence
analysis under suitable assumptions for given functions is presented. We im-
plement our method for two general examples which cover the integral and
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deviated differential equations. It is easily seen that the numerical analysis
is consistent with theoretical results presented in the paper. The applica-
tion for numerical solving of mathematical model for the dynamics of cells
populations in the CFSE proliferation assay is considered. This example also
shows that the weighted numerical method is unconditional stable for the
parameter s ∈ [0, 0.5]. Moreover, in the case when the CFL condition is not
satisfied, we can observe that numerical solutions obtained by methods for
s ∈ (0.5, 1] brake positivity property which is expected for density function.
Application of the methods with s ∈ [0, 0.5] produce solutions which preserve
positivity property. Therefore the analysis of the positivity property of the
weighted numerical method for the parameter s ∈ [0, 0.5] remains open and
can be interesting topic of further research, because of the wide applications
for the approximation of many models describing biology and epidemiology.
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l’équation parabolique sans dérivées mixtes, Ann. Polon. Math. 31 (1975), 47-54.
MR 0383782; Zbl 03493813.

[25] M. Malec, Sur une famille bi-paramétrique des schémas des différences pour les
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Ważona metoda różnicowa dla układów quasiliniowych
cząstkowych równań różniczkowo-funkcyjnych pierwszego rzędu

Anna Szafrańska

Streszczenie Praca dotyczy zagadnień początkowo brzegowych typu Dirichlet’a dla
układów quasiliniowych równań różniczkowo-funkcyjnych. Zamieszczona jest kon-
strukcja ważonych metod różnicowych dla wyjściowych zagadnień różniczkowych
oraz przeprowadzona jest pełna analiza zbieżności. Niezbędne założenia obejmują
oszacowania typu Perrona dla funkcji danych względem argumentów funkcyjnych.
Dowód stabilności metody różnicowej opiera się na technice porównawczej. Teore-
tyczne rezultaty zobrazowane są na przykładzie całkowego równania różniczkowego
oraz równań różniczkowych z odchylonym argumentem.

2010 Klasyfikacja tematyczna AMS (2010): 35R10; 65M12; 65M15.

Słowa kluczowe: zagadnienia początkowo brzegowe, metody różnicowe, stabilność i
zbieżność, operatory interpolacyjne, oszacowanie błędu, metody porównawcze.
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