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Abstract The study concerns the determination of quadrature for the integral so-
lution of the paraxial wave equation. The difficulty in computation of the integral is
associated with the rapid change of the integrand phase. The developed quadrature
takes into account the fast oscillating character of the integrand. The presented
method is an alternative to the commonly used methods based on the use of the
Fourier transform. The determination of the quadrature is discussed on the exam-
ple of the integral arisen in the theory of propagation and focusing on hard X-rays
waves. Due to the generality of the presented quadrature, it may also be applied to
issues related to standard optics and acoustics.

2010 Mathematics Subject Classification: 65D32, 65E05, 65Z05, 35Q60.

Key words and phrases: paraxial wave equation, quadrature, quick oscillating inte-
grands, X-ray optics.

1. Introduction An efficient method of integrals calculation of fast
oscillating functions is topical due to many applications in applied mathe-
matics, physics and engineering. The integrals of this type are difficult to
calculate using standard methods of numerical integration when the rate of
oscillations of the integrands exceeds the number of quadrature points. The
method for calculation of such integrals was for the first time suggested by
Filon [5], and since then many various improvements have been submitted
for the calculation of a generalized Fourier transform. For example, these are
methods of Clenshaw - Curtis type [2], [4], Levin’s method [19], [20], [21],
methods of Levin type [23], Huybrechs and Vandewalle method [7], and
also [30], [31], [22], [9], [10], [11], [33], [34].

Filon numerical quadrature for the integral
b∫
a
f (x) eiωg(x)dx is based on

approximation of the function f (x) by a polynomial p(x) using values of
the function f (x) in nodes and the subsequent calculation of the integral
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b∫
a
p (x) eωg(x)dx instead of the integral

b∫
a
f (x) eiωg(x)dx. Iserles [8], [9] ana-

lyzed the method convergence at various oscillation frequencies and he showed
that the accuracy of quadrature formulas increases, when the oscillation
frequency increases. Later Iserles and Nı̂rsett [10], [11] expanded the ap-
proach [8], [9], and also suggested a generalization of Filon’s method for the

integral
b∫
a
f (x) eiωg(x)dx. They showed that with the growth of frequency ω,

the error of approximation may be decreased. In both methods, in Filon’s
method and in the generalized Filon’s method, the function f (x) is approxi-
mated by splines, which may be used for smooth enough functions, provided

that the moments
b∫
a
xkeiωg(x)dx may be precisely calculated for first values

of the parameter k [11].
Levin’s method [19] is applicable to a wide class of the integrals

b∫
a

f (x) eiωg(x)dx

without the explicit calculation of the moments. The initial problem of in-
tegration had been transformed to the problem solved by the collocation
method, with the weight function satisfying a certain differential equation.
Levin showed [20] that for ω large enough, accuracy increases with the in-
crease of the function oscillation rate. Xiang showed that in case of a smooth
enough function f (x) Filon’s method is identical to Levin’s method with the
suitable polynomial interpolation [34].

In the present paper, the method of numerical computation of the integral
(1) with a quickly oscillating integrand is considered. The integral (1) gives a
solution to the paraxial wave equation (4) [35], [3], [6], [32], [26]. The problem
has arisen due to scientific research and developments in modern technologies
in the field of hard X-ray microscopy: it has many various practical uses.
Therefore, in the beginning of the work some applications of the considered
integral are shortly presented. The presented facts have technical character
and illuminate the requirements of the developed method of the integral
calculation. They also provide information about a class of functions, which
is useful for consideration of the investigated problem. Nevertheless, this
technical information can be omitted without the loss of understanding of
mathematical aspects. The considered integral is two-dimensional, but the
approach to calculation of quickly oscillating integrals is applicable to this
kind of problems as well.

Within the paper, only the application of the integral to the problem
of hard X-rays propagation and focusing is considered. However, the same
equations describe any electromagnetic wave within the limits of the paraxial
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approach, and a quasi-monochromatic acoustic wave with a corresponding
parity in scales (in order to address to acoustic problems, it is necessary to
replace the speed of light with the sound speed). Therefore, the submitted
method of calculation may be useful not only in hard X-ray optics, but also
in standard optics and in acoustics.

2. Integral of the theory of propagation of electromagnetic
waves within the paraxial approach Due to the nanotechnologies de-
velopment and chemical and biological research [27], [18], [29], [25], [28], [12],
[13], X-ray microscopy developed quickly during the last 15-20 years. The
basic scheme of an X-ray microscope is presented in Fig. 1.

Figure 1: A schematic drawing of an X-ray microscope. The monochromatic
beam of X-rays falls onto a system of lenses (for simplification only one lens
is shown). The distribution of an electromagnetic field after the lenses (at
x = 0) is given by A(0, y, z). The distribution of an electromagnetic field
A(x, y, z) on the detector has to be calculated.

In order to obtain focusing of X-rays, roentgen waves propagate through
a special system of lenses, subsequently the X-rays propagate in air, until
reaching the detector, where an image is fixed. A solution of the electrody-
namics problem describing the X-rays propagation between lenses and the
detector is known and it is given by the integral [12], [16], [17], [14]

A (x, y, z) =

∫∫
S

A (0, ξ, η) G(x, y, z, ζ, η) dξ dη. (1)

Here the function A (0, y, z) eikxx describes spatial dependence of intensity
of an electric field after the wave has passed through the system of X-ray
refractive lenses. The function A (x, y, z) eikxx is intensity of the electric field
on the image plain being located at the distance x from the last lens. y, z
are coordinates along coordinate lines directed perpendicularly to the optical
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axis of the optical system. ~k = (kx, 0, 0) means the X-rays wave vector,
kx = ω0

c , c denotes the speed of light and ω0 is an electromagnetic wave
angular frequency. G(x, y, z, ζ, η) is the so-called Kirchhoff propagator [12],
[16], [17], [14]

G(x, y, z, ζ, η) = − i

πλ2
∗ exp

(
i ∗ (y − ζ)2 + (z − η)2

λ2

)
, λ2 =

2xc

ω0
. (2)

The symbol S in (1) shows the integration domain. The integral (1) is com-
puted over the cross section of the X-ray beam after the beam has passed
through the system of lenses. It is possible to take a square of the side a
as the integration domain S; the size a depends on parameters of an optical
system and will be given below. When x→ 0 the propagator (2) turns into

G(x = 0, y, z, ζ, η) = δ (y − ζ) δ (z − η) , (3)

where δ (y − ζ) denotes the delta function.
The Kirchhoff propagator (2) is a solution of the paraxial wave equation

[35], [3], [6], [32], [26]

∂A

∂x
=

i c

2ω0

(
∂2

∂y2
+

∂2

∂z2

)
A. (4)

It describes propagation of a monochromatic electromagnetic wave in vacuum
within a paraxial approach. The solution (2) of equation (4) corresponds to
the boundary condition (3).

The function A (0, y, z) is given by a solution of the problem of propaga-
tion of an electromagnetic wave through the system of lenses. We have some
a priori information about the function A (0, y, z). For example, it is possible
to show that, if lenses are ideal, then the function A (0, y, z) is twice differen-
tiable with respect to y, z. Real lenses are nonideal. So, generally speaking,
they are described by continuous, but not by necessarily differentiable func-
tions. Thus, from the practical point of view, we take an interest in both
cases, when A (0, y, z) is n−differentiable function and when A (0, y, z), is a
continuous, but non-differentiable function.

One more feature of the problem is that we have no explicit representation
of A (0, y, z). We know only the values of the function A (0, y, z) at the grid
points (yk, zm), yk+1 = yk + h, zm+1 = zm + h. That is, we have the matrix
Akm of the values of A (0, y, z) in the points (yk, zm) of the grid Ωh as an
information about the function A (0, y, z); and we have to restore the function
A (0, y, z) by means of suitable interpolation. Nevertheless, it is possible to
vary the step h of the grid Ωh in wide range, reducing or increasing the
resolution. In this context, we can consider A (0, y, z) as a known function.

The integral (1) is difficult for numerical calculation with the application
of the usual methods. In order to understand better the reason of complexity
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of calculation of the integral, we consider a practical situation. In the X-ray
microscopy, approximately 30 beryllium lenses are often used to get focusing
of X-rays waves [18], [15], [14]. Thus, the focus of such an optical system is
approximately equal to 0.3 meter; the frequencies of the used X-ray waves
are about ω0 ≈ 1019 1s . Hence, in the focal point of the X-rays optical system
of 30 berillium lenses, the parameter λ ≈ 5∗10−6m. Due to lenses’ forms, the
stream of electromagnetic waves gradually fades closer to lenses’ edges, and
there is a concept of working area of lens being named the lens aperture [13],
[18], [14]. For lenses, utilized in the X-ray optics, the lens aperture d ≈ 5∗10−4

m, and consequently it is natural to take the square S =
[
−d

2 ,
d
2

]
×
[
−d

2 ,
d
2

]
as an integration domain in (1).

We see that
(
d
λ

)2 ≈ 104, and due to this fact, we undoubtedly should
consider the integrand in (1) as a fast oscillating function.

We can choose the aperture size d as a unit of measure of distance, and
introduce new, dimensionless variables y′ = y

d , ξ′ = ξ
d . Then the integral (1)

takes a standard form of a fast-oscillating integral:
∫∫
s′
f (t) eiωg(t)dS′, where

ω = d2

λ2
� 1, t = (y′, z′), τ = (ξ′, η′), g = (y′ − ξ′)2 + (z′ − η′)2 = |t − τ |2,

S′ = [−0.5, 0.5] × [−0.5, 0.5], dS′ = dξ′dη′, f (y′, z′) = A (0, y′d, z′d). In our
case the region of integration is a two-dimensional one. Further, we will not
use this form of the fast-oscillating integral (1) because of many scientific and
technological usages of the integral under consideration; we wish to keep, as
close as possible, the connection of our consideration with real applications.

Usual quadrature formulas are based on splitting the given region of the
integration S into small subdomains sij and the subsequent approximation
of the integrand inside of small subdomains sij following the first few terms
of Taylor series. One can easily show that the values of G(x, y, z, ζ, η) in the
vicinity

(
ξ0 − h

2 , ξ0 + h
2

)
×
(
η0 − h

2 , η0 + h
2

)
of any given point (ξ0, η0) ∈ S

can be well approximated with the help of the first few terms of Taylor series
of G(x, y, z, ζ, η) in the point (ξ0, η0), only if the step h satisfies restriction
h� λ2

d ≈ 5∗10−8 m. If we know this upper restriction on the step h, we can
easily estimate the minimum number of nodes N of quadrature along each
coordinate axis: N � 104. In a two-dimensional case, the minimum number
of nodes for calculation of integral (1) is estimated already as N2 � 108. In
practice, we need to calculate N integrals of the form (1) in a one-dimensional
case, and N2 integrals of such a kind in a two-dimensional case. Obviously,
such quantity of calculations is a demanding task even for a powerful super-
computer.

For calculation of the integral (1), the technique based on Fourier trans-
formation is recommended in the literature on X-ray optics [24]. Namely, at
first step, the integration domain S in (1) is extended up to all R2−plane,
and the function A (0, y, z) is redefined with zero outside the initial region of
the integration S. In order to obtain the solution A(x, y, z) given by the inte-
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gral (1), first we need to use the convolution theorem (the Fourier transform
of a convolution is equal to the pointwise product of the Fourier transforms)
and then, utilize the inverse Fourier transform [24], [1]. In this way, we can
replace the initial integral with an integral of the Fourier transforms of the
initial functions:

A (x, y, z) =

∫∫
R2

A (0, ξ, η) G(x, y, z, ζ, η) dξ dη = (5)

=

∫∫
R2
k

Ã (0, ky, kz) G̃(x, y, z, ky, kz) dky dkz

The last integral in the right part (5) is essentially better for the numerical
integration in comparison to (1). An effective calculation of integral (1) is
prevented by presence of small λ2 in the exponent denominator in (2). The
Fourier transform G̃(x, y, z, ky, kz) of the propagator G(x, y, z, ζ, η) has the
following form:

G̃(x, y, z, ky, kz) =
1

2π
e−

iλ2

4 (k2y+k2z)e−i(kyy+kzz) (6)

and the small multiplier λ2 is contained already in the exponent numerator,
instead of the denominator, and the problem disappears. Therefore, the
usage of the Fourier transformation essentially simplifies calculations, and the
integral is successfully computed. However, such a technique of the integral
calculation has certain defects:

• Redefinition of A (0, y, z) up to all R2-plane leads to the redundancy of
computer calculations as a result.

• The function G̃(x, y, z, ky, kz) does not vanish when k2y + k2z → ∞.
Therefore, the requirement that the function A (0, ky, kz) should tend
to zero faster than 1

k2y+k
2
z

when k2y + k2z → ∞ is a necessary condition

for existence of the integral in the right-hand part of (5). We know that
the rate of the decrease of the Fourier transform when k2y + k2z → ∞
is inseparably linked to smoothness of an initial function. Thus, at
least twice differentiability of the function A (0, y, z) with respect to
variables y, z is necessary for the existence of the integral in right-hand
side of (5). However, in general, we can not suppose that the function
A (0, y, z) possesses such smoothness.

• The integration region cannot be boundless in numerical computations,
and we must take the finite subdomain Sk ∈ R2

k instead of R2
k, and also,

we apply the discrete Fourier transformation instead of the continuous
one. It brings an additional error. The suitable domain of the integra-
tion Sk should be chosen experimentally in accordance with results of
a few test simulations.
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• It is known that the Fourier-approximation of any function by a finite
Fourier series smoothes the initial function. At present, the problem of
influence of minor defects of refracting X-ray lenses on the image is top-
ical. The smoothing effect of the finite Fourier series can significantly
reduce influence of defects and can essentially complicate research of
influence of lenses defects.

Thus, the suggestion of some other ways of computation of the integral
(1) eliminating at least some of the listed imperfections would be desirable.

3. Efficient quadrature based on the idea of Filon’s method.
It is natural to employ the idea of Filon’s method for the calculation of
an integral (1). We split the integration region S into small subareas skm:
S =

⋃
(k,m)

skm. Let the point (ζk, ηm) be the centre of the domain skm =[
ζk − h

2 , ζk + h
2

]
×
[
ηm − h

2 , ηm + h
2

]
. It is easy to show that the Gauss func-

tion in G(x, y, z, ζ, η) is well approximated by an exponent function within
any small area of the integration skm

ei∗
(y−ζ)2+(z−η)2

λ2 ≈ ei∗
(y−ζk)

2
+(z−ηm)2+2(y−ζk)(ζk−ζ)+2(z−ηm)(ηm−η)

λ2 ,

(ζ, η) ∈ skm (y, z) ∈ R2, (7)

provided that the grid step h satisfies the condition h
λ � 1. Therefore, in

order to obtain A (x, y, z), we will apply splines constructed on the basis of
the exponent functions. By using the condition h

λ � 1, we can obtain a
useful estimate: N � 100 grid points for each space dimension is necessary
to perform the calculation in the area with the diameter d ≈ 5 ∗ 10−4 m.
If high accuracy is not required, we can take only N = 1000 along each
dimension. It is 102 times less than the previous estimation in case of one
dimension, and 104 times less in case of two dimensions. The advantage is
essential.

During the derivation of quadrature, we will take into account that the
function A (0, y, z) may be fast oscillating as well. In the X-ray optics, the
function A (0, y, z) is calculated by means of solving the equation describing
the propagation of an electromagnetic wave through a system of lenses [17],
[15]:

∂A

∂x
− b (x, y, z) A =

i c

2ω0

(
∂2

∂y2
+

∂2

∂z2

)
A, (8)

where b (x, y, z) is a complex function depending on a lens material and its
form. The function b (x, y, z) is equal to zero at the points, in which the elec-
tromagnetic wave propagates through air, and b (x, y, z) = i ω0

2 c

[
1− 1

n2

]
d (x, y, z)

at the points corresponding to a lens material. Here d (x, y, z) describes the
lens form. n = 1 − δ + iβ is a complex factor of refraction for a lens mate-
rial. The imaginary part of n defines the attenuation of an electromagnetic
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wave in a lens material. The right part of the equation (8) is comparatively
small [13], [17], [15]. By neglecting this small right-hand term, we obtain a
relation for the function A (0, y, z), after the X-rays waves have propagated
through the system of NL lenses [13], [17], [15]:

A (0, y, z) ∼ eiφ(y,z), φ (y, z) =

(
y2 + z2

)
l2

(9)

where l−2 = ω0δ
c NL

1
R , R is a radius of curvature of a parabolic lenses and

NL denotes the number of lenses. When we use many lenses, the frequency
is high and the curvature of lenses is small (for example, R = 50µm), the
denominator l2 will be small. For the optical system of 30 beryllium lenses
l ≈ 7 ∗ 10−6m. That is, l is comparable with λ.

Taking into account the above consideration, it is the expedient to the in-
terpolate A (0, ξ, η) by means of the complex exponent function in the vicinity(
yk − h

2 , yk + h
2

)
×
(
zm − h

2 , zm + h
2

)
of the point (yk, zm):

A (0, ξ, η) ≈ Ak,m ∗ eiψkm(ξ,η), ψkm = [αkm (ξ − yk) + βkm (η − zm)] , (10)

αkm =
1

2ih
ln
Ak+1,m

Ak−1,m
, βkm =

1

2ih
ln
Ak,m+1

Ak,m−1
,

Ak,m = A (0, yk, zm) .

When we calculate the factors αkm, βkm, we need to take into account that ln
is a multivalued function. The standard computer programs for the complex
logarithm always give the logarithm a phase from the interval (−π, π), while
in our problem the logarithm phase can change significantly and we need to
choose the correct branches of the logarithm. When h is small enough, we
can easily avoid the problem of many-valuedness of the complex ln. To this
end, we can apply the asymptotic series to ln

Ak+1,m

Ak−1,m
, ln

Ak,m+1

Ak,m−1
. For example:

ln
Ak+1,m

Ak−1,m
=

Ak+1,m −Ak−1,m
Ak,m

×
(

1−
Ak+1,m − 2Ak,m +Ak−1,m

2Ak,m
+O (∆A)2

)
, (11)

where ∆A = max(k,m)

{∣∣∣Ak+1,m−Ak,m
Ak,m

∣∣∣ , ∣∣∣Ak+1,m−Ak,m
Ak+1,m

∣∣∣}. A similar formula is

valid for ln
Ak,m+1

Ak,m−1
. Usage of equality (11) solves the problem of choice of the

correct branches of the logarithm.
We use the formula (7) in order to obtain the approximation of the propa-

gator (2) in vicinity of the point (yk, zm). Then we multiply approximations
of A (0, ξ, η) and G(x, y, z, ζ, η) and we integrate the result over the areas
skm =

[
yk − h

2 , yk + h
2

]
×
[
zm − h

2 , zm + h
2

]
, −M

2 ≤ m ≤ M
2 , −M

2 ≤ k ≤ M
2 .
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We add up all the results of the integration, and in this way we obtain an
approximate value B (x, y, z) of the searched integral

A (x, y, z) ≈ B (x, y, z) = −

M
2∑

k,m=−M
2

i

πλ2
Akm ∗Kkm ∗ Lkm, (12)

where

Kkm =


2e
i∗ (

y−yk)
2

λ2

α̃km
sin
[
α̃km

h
2

]
,

∣∣α̃km h
2

∣∣ > 0.1

ei∗
(y−yk)

2

λ2 h
(

1− h2

24 (α̃km)2
)
,
∣∣α̃km h

2

∣∣ ≤ 0.1

(13)

with α̃km = αkm + 2(y−yk)
λ2

,

Lkm =


2e
i∗ (z−zm)2

λ2

β̃km
sin
[
β̃km

h
2

]
,

∣∣∣β̃km h
2

∣∣∣ > 0.1

ei∗
(z−zm)2

λ2 h

(
1− h2

24

(
β̃km

)2)
,
∣∣∣β̃km h

2

∣∣∣ < 0.1

(14)

and β̃km = βkm + 2(z−zm)
λ2

. During the derivation of formulas (13), (14), we
have taken into account uncertainties 0

0 , which arise when h → 0. In order
to obtain a good result for a very small h, we have used the expansion of
the function sin in the Taylor series taking into account up to cubic terms.
We see that procedures of the calculation of the partial integrals for various
subareas skm can vary. This follows the fact that the oscillation frequency of
the integrand is changeable and strongly depends on position of the points in
the area S. The quadrature is adapted to changing behavior of the integrand.

Fig. 2 shows an example of the calculation of |A(x, y, z)|2 obtained with
the help of the formula (12) at distances x = 0.135 m and x = 0.255 m and
for space step h = 1.51 ∗ 10−7m. The focal spot of such an optical system is
located approximately at x = 0.275 m, and we observe the focusing effect with
the change of distance. The smaller the distance x from the system of lenses,
the smaller is the value of lambda. For small values of the lambda make that
the function becomes quickly an oscillating function. This indicates that in
order to evaluate well the value of the function for small distances x, the
sufficiently low value of h must be chosen; but for larger distances x, it is
possible to use larger values of h.

Theorem 3.1 If A(0, y, z) ∈ Cn (S), 1≤ n ≤ 2, then |A(x, y, z)−B (x, y, z)| ≤
Chn at x > 0, where C is some constant depending on x and on A(0, y, z).
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Fig.2a Fig.2b

Figure 2: Examples of computation of |A(x, y, z)|2 at the distances x = 0.135
m and x = 0.255 m, obtained for the function A(0, y, z), which corresponds
to X-rays after the system of 30 beryllium lenses.

Proof If one uses Taylor’s theorem, one can write both the function A (with
the Peano form of the remainder) and the Gaussian function in the following
form:

A (0, ξ, η) = Ak,m e
iψkm(ξ,η)+Hk,m(ξ,η)O(h), (15)

ei
(y−ζ)2+(z−η)2

λ2 = ei
(y−ζk)

2
+(z−ηm)2+2(y−ζk)(ζk−ζ)+2(z−ηm)(ηm−η)

λ2
+O(h2), (16)

(ζ, η) ∈ skm, x > 0,

where lim(ζ,η)→(ζk,ηm) Hn,m (ξ, η) = 0. We have

A (x, y, z) =

∫∫
S

A (0, ξ, η) G(x, y, z, ζ, η) dξ dη = B (x, y, z) +

M
2∑

k,m=−M
2

DkmFkm,

Dkm = − i

πλ2
Akm e

i
(y−ζk)

2
+(z−ηm)2

λ2 ,

Fkm=

∫∫
skm

ei
2(y−ζk)(ζk−ζ)+2(z−ηm)(ηm−η)

λ2 eiψkm(ξ,η)(Hn,m (ξ, η) O(h)+O(h2))dξdη.

The estimations are valid

|Dkm| ≤
|Akm|
πλ2

≤ Dmax, Dmax =
1

πλ2
sup

(ξ,η)∈S
{|A (0, ξ, η) |},

|Fkm| ≤ Fmax = max
k,m
{ sup
(ξ,η)∈skm

{|Hk,m (ξ, η) |}}O(h) +O(h2) → 0 at h → 0.
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Therefore,
|A(x, y, z)−B (x, y, z)| ≤ DmaxFmax (M + 1)2 h2 = DmaxFmaxS → 0 at
h → 0. �

Remark 3.2 The method (12) is applicable for computations in case of the
non-differentiable A(0, y, z) ∈ C (S) as well, if the following technique is used.
For any A(0, y, z) ∈ L1 (S), the property A(0, y, z) = A0(0, y, z) +A1(0, y, z)
is valid, where A0(0, y, z) ∈ C∞ (S), A1(0, y, z) ∈ L1 (S). For example,

A0(0, y, z) =
1

πε

∫∫
s

A(0, ξ, η)e−
(y−ξ)2+(z−η)2

ε2 dξdη, (17)

A1(0, y, z) = A(0, y, z)−A0(0, y, z).

The function A0(0, y, z) satisfies the conditions of Theorem 3.1, and we
can use A0(0, y, z) for the calculations under formula (12). The function
A1(0, y, z) can be made arbitrarily small due to the choice of small enough ε,
and it can be neglected. In practical calculations, the averaging is applied,
in which the integral in (17) is replaced with the approximated integral sum.

4. Main results and discussion. Using ideas of Filon’s type methods,
we have constructed a quadrature for calculation of the integral (1).

The method is of the second order of accuracy, if the subintegral function
is twice differentiable, and has the lower rate of convergence and, if the inte-
grand possesses worse differentiability properties. The constructed method
automatically turns into usual quadrature of the rectangles method, when
h is small enough. This property is useful, because the rectangles method
is applicable even in case of functions with bad differentiability properties
(for example, if the function A (0, y, z) is non-differentiable, but is a piece-
wise continuous function). Therefore, it allows making calculations for the
function A (0, y, z) without good differentiable properties within the limits of
the proposed method, but by applying a supercomputer. In this sense, the
method is a robust one; it well adapts to features of the situation and is good
for carrying out scientific and technological research.

The method has a minor disadvantage as the admissible step h in the
quadrature formula depends on x and step h→ 0 when x→ 0 (the inequality
h� λ should be satisfied). However, this disadvantage reveals itself only for
very small x, and is unimportant from the practical point of view.
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Wydajna kwadratura dla całkowania szybko oscylujących funkcji
optyki rentgenowskiej

Sergey Kshevetskii, Paweł Wojda

Streszczenie Praca jest poświęcona wyznaczaniu kwardratury dla rozwiązań cał-
kowych równania przewodnictwa cieplnego z zespolonym potencjałem. Trudność w
wyznaczaniu tego typu całek jest związana z szybkimi oscylacjami funkcji całko-
wanej. Prezentowana metoda jest alternatywą dla powszechnie stosowanej metody
opartej o zastosowanie transformacji Fouriera. Specyzowanie kwadratury jest prze-
dyskutowane na przykładzie całek występujących przy badaniu teorii propagacji i
skupiania promieniowania rentgenowskiego. Dzięki ogólności prezentowanej kwadra-
tury, może być ona także zastosowana do zagadnień związanych z optyką i akustyką.

Klasyfikacja tematyczna AMS (2010): 65D32; 65E05; 65Z05; 35Q60.

Słowa kluczowe: równanie przewodnictwa cieplnego z zespolonym potencjałem, kwa-
dratura, całkowanie szybko oscylującej funkcji, optyka rentgenowska.
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