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DELAYED EQUATIONSIN APPLICATIONS
URSZULA FORYS

ABSTRACT. Inthis paper we make a review of analysis of delay difféegeguations in the context
of applications. We illustrate described methods usingpraxamples known from biomathemati-
cal literature.

1. INTRODUCTION

Recently, delay differential equations (DDES) are fredlyemsed in the description of various
natural phenomena. There are models known from years Hé&éltitchinson equation (cf. [52]),
which was proposed in 1948 and has been studied in many pagdext-books [46, 49, 55], as
well as many newer models; cf. [3,11] in the context of ronarglationships, [5, 6, 24—28, 32]
in the description of immune reactions, [13, 15, 35, 62] fimchemical reactions modelling, and
many papers devoted to various stages of tumour growth aathtent, such as [7,8,17,33,34, 36,
38, 39,44, 65-68] describing avascular stage of tumourirda7,41,42] for vascular stage, [12,
14,31] for carcinogenic mutations, [40, 43] for immunotg@y of cancers, and [10, 30] describing
dynamics of some class of DDEs resulting from the analystambur growth. Notice, that most
of the cited papers are the results of research in our grautpthle number of papers involving
models with delays still increase tremendously.

Although many properties of DDEs are similar to ordinarfetiéntial equations (ODES), there
are also significant differences between these types oftiegsa In this article we present some
basic mathematical properties of DDEs in the general cowofeckynamical systems. We compare
these properties with standard theory of ODEs and give semarnks on the theory of functional
differential equations defined in Banach spaces.

2. FNITE AND INFINITE DIMENSIONAL CONTINUOUS DYNAMICAL SYSTEMS
Finite dimensional dynamical systems are typically geteery ODESs of the following form

(2.1) t=f(z), z€R" neN,
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wherez = ‘jl—f, n is the number of equations in the system and the dimensioneoflynamical

system as well. Any solution of system (2.1) can be expreaseal function of timer,(¢) for
fixed initial vectorzx,, but from the other hand, as a function of initial dat&z,) for fixed ¢. If
the solution is defined for any initial datg € R™ andt¢ € R, thenz; : R® — R", t € R, defines

a family of functions. This family forms a dynamical systefdimensionn. In the context of
biomedical applications typically initial data and sotuts should be non-negative. In this case the
dynamical system is defined 0B )", whereR* = {(xy,...,2,) € R": 2; >0, i = 1,...,n}.
Moreover, we look for forward solutions as we are interestepredictions of the future system
dynamics. Hence, assuming that initiadly= 0, we are looking for solutions of the system far 0
and the family of solutions is defined for> 0. Formally, we distinguish between dynamical
and semi-dynamical systems that are defined for everyR or ¢t € R*, respectively, cf. [74].
However, we call such families dynamical systems, for siaity| although they are defined only
fort > 0.

Infinite dynamical systems, cf. [51], can be generated bgydeifferential equations or reaction-
diffusion equations. Such systems are generated in the say@s in case of ODEs, the only
difference is connected with the functional space on thatsistem is defined. In this case the
functional space is infinite dimensional.

The most typical system of DDEs applied in biomedical madglteads

(2.2) &= f(x(t), x(t — 7)),

wherez is the right-hand side derivative with respect to time- > 0 denotes time delay, cf.
e.g. [22,49,50] and [46,55,57] in the context of biomedmabelling. Typically, for system (2.2)
we define initial datd0, x,) for xq : [—7,0] — (R™)" continuous, where is the number of equa-
tions, as before. To obtain a dynamical system we need tod$w@uéons of the same functional
form defined on the same space as initial data. al(e}, ¢ > 0, be the solution of Eq. (2.2) for
some initial datar, and define

xi(h) =x(t+ h), h € [-71,0], t > 0.

Thenz, : [—7,0] — R" is the part of solution defined dn— 7, ¢], but it has a functional form we
are interested in. Therefore, we define our dynamical systethe space of continuous functions
defined on the interval-r, 0].

Similarly, we can generate infinite dimensional dynamigadtem on the basis of reaction-
diffusion equations, cf. e.g. [16,23,51,70,73]. RDEs hgkto the class of partial differential
equations. In the context of biomedical applications supliaéions describe not only the pop-
ulation size but also the dependence on space, age or otpertant quantities. We have two
independent variables: timeand positionp, while the dependent variable is = z(¢,p). In
general, for PDEs, apart from initial data we need to definenbdary conditions. Typically, for
bounded regioi/, that is equivalent to a box iR”, depending on the number of equations, we
consider two types of boundary conditions:

¢ the Neumann BC, when the normal outside derivative efjuals) at the boundary o/
(zero-flux bc);
¢ the Dirichlet BC, when: equals) at the boundary dff.

It should be noticed that there are also mixed BC like the R&, used in more complex cases.
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The process of diffusion means a random movement of indalgdand is described by the
Laplace operatoAz=3"F_, 32795, wherep = (p1, ..., px) denotes the position ardis the dimen-
sion of space, where individuals live, in reality= 1, £k = 2 or k = 3. In RDEs we combine
the process of diffusion with some reaction described bynatfan f(x) reflecting the mean sys-
tem dynamics (that is the dynamics without diffusion ddsexliby ODES). This function is called
a kinetic function or just kinetics. Hence, the simplest Rie&ds

(2.3) % = f(z) + DAz,
whereD > 0 is the diffusion coefficient and we consider Eq. (2.3) witk #@ppropriate BC on
the boundary ot{. To solve Eqg. (2.3) with some BC we also need to describealnitata, that
meant,, typically t, = 0, andz, which is a function defined a7 and fulfilling the assumed BIC
Therefore, similarly to DDEs, we can define some dynamicstiesy in the appropriate functional
space, e.g. in Sobolev spaéE or H}, depending on the BC, the Neumann or Dirichlet BC,
respectively.

Figure 1 illustrate the schematic difference betweenahdata and solutions of single ODE,
n =1, (Eq. (2.1), left), DDE (Eg. (2.2), middle) and RDE (Eq. (2.8ght).

X, —

‘ x(t,p)
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FIGURE 1. The difference between initial data and solutions of O2i)( DDE
(middle) and RDE (right). For ODE it is a point (iR): z, is the initial point and
x(t) is the solution at some time both point are marked by dots in the graph. For
DDE it is a (continuous) functiom, defined on[—,0]. The solutionz, for this
initial data is also a function defined in the same intervathBunctions (the initial
functionz, and the part the part of solution reflectingafter the shift to—r, 0])
are indicated by bold lines. Similarly for RDE, both init@déta and solutions are
functions. However, now initial data, is a function ofp and the solution at time
is also such function. Hence, we hawmg, p). The initial data and solution at time
t are indicated by solid lines, again.

2.1. How to analyse mathematical models based on dynamical systems? Every mathemati-
cal model should be analysed in the context of correctnes®refore, we need to study basic
properties like:

e existence and uniqueness of solutions;

e non-negativity for non-negative initial data;

1In biomedical applications an initial function frequentlges not satisfy the BC, however dif-
fusion quickly “smooths” so we can assume the BC is satisfigah the very beginning.
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e possibility of a solution extensidn
e local stability of steady staté&s

e possibility of global stabilits;

e existence of periodic solutions;

e bifurcations.

It should be noticed that global (IR") existence, uniqueness and non-negativity of solutidosval
to define an appropriate dynamical system and use the dyabsy&tems tools.

2.1.1. Existence, uniqueness and non-negativity of solutiondaE$ Existence and uniqueness
of solutions are typically a simple consequence of the fofmight-hand side of the system. For
autonomous DDEs in general form

(2.4) B(t) = f (),

where f is an operator defined on Banach spé&cef continuous functiony : [—7,0] — R"
equipped with standard supremum norm, we are able to proniastheorems as for autonomous
ODEs of the form (2.1), cf. e.g. [49]. Hence,fifis continuous, then solutions of Egs. (2.4) exist,
while if it locally LipschitZ, then solutions are unique.

On the other hand, non-negativity and global existence hitisms should be study for every
model separately. However, for systems of the form (2.2) aveuse so-called step method, that is
the method of mathematical induction adapted for DDEs. Mweeisely, letp € C be an initial
function and considere [0, 7]. Then Eqg. (2.2) reads

(2.5) #(t) = f(2(t), o(t — 7))

because — 7 € [—7, 0] andz = ¢ in this interval. We see that Eq. (2.5) is non-autonomous ODE
and we can analyse it using standard tools of ODEs. Hende Balution of Eq. (2.5) with initial
data(0, ¢(0)) exists for allt € [0, 7], then we can continue such procedure ffog [r,27]. In
general, assume that : [(k — 1)7, k7] — R™ is a continuous solution of Eq. (2.2) in the interval
[(k — 1)7, k7] and consider

(2.6) (t) = f(z(t),zx(t — 7)), t€ [kr,(k+1)T].

If for arbitrary k there exists a continuous solutiep,; : [k7, (k 4+ 1)7] — R™, then the method
of mathematical induction implies that the solution fottiai data(0, ) exists globally (inR™).
Similarly, we can use this method to study uniqueness anehegativity of solutions.

2For semi-dynamical systems it means that we can extendicoduor everyt > 0. Notice,
that even for ODE it is sometimes not possible to extend theatisa for everyt > 0. If the
right-hand side of ODE increases more than linearly, thensibiution can blow up. Equation
i = 22 is probably the best known example of such dynamics: for amsjtipe 2, the solution
x(t) = zo/(1 — wot) tends toco for t — £ = 1/x, that is there is a blow up at

3Local stability means that for initial data near the steaidyesthe solution remains near this
state fort > 0. If additionally all solutions from some neighbourhood loé tsteady state tends to
it for t — +o0, then this state is locally asymptotically stable.

4Global stability means that all solutions from some set hegroperties described above.

SBifurcation means the qualitative change of solution dyitamwith the change of some param-
eter of the model.

%Operatorf is locally Lipschitz if for any compact séf C C there exists sucli, > 0 that

|f(¢) = f(y)| < L|¢ — | for everye, ¢ € U.
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Notice that, iff (z(t), z(t—7)) = f(z(t—7)), thatis the right-hand side depend only on the past
timet—r, then the step method immediately yields global existendauaiqueness for continuous
functionsf’. Moreover, if f is non-negative, then any solution remains non-negatitieisncase,
cf. [4] and the discussion on non-negativity presentedether

Example 1. Let us consider a scalar linear equation
(2.7) t=ax(t)+bx(t—7), a, bER, b#O,
with initial functiony € C for t € [—7,0]. Then fort € [0, 7] we have

i=ax(t)+bo(t —7) = 2(t) = p(0)e" + be™ /Ot e “p(s—rT)ds

and we see that the solution exists, is unique and non-regatsuming > 0 and(0) > 0.
Next, assuming that; : [(k — 1)7, k7] — R is the solution of Eq. (2.7) if(k — 1)7, k7] we
obtain

t
i =azx(t) +bry(t —7) = x(t) = (k7)€ =+ 4 be“t/ e “xp(s —T)ds
kT

fort € [kr,(k + 1)7]. The step method yields the existence and uniqueness dfcsofor all
t > 0. Moreover, solutions are non-negative for 0 andy(0) > 0.

2.1.2. Steady states and local stability for DDEkooking for steady states of Eqgs. (2.2) we no-
tice, that a steady state is a solution that does not depetimhenand therefore(t) = z(t—7) =z
for everyt. This means that any steady statsatisfies the system of algebraic equations

(2.8) 0= f(z,z).

Again similarly to local stability analysis for ODEs, we utbe linearisation methddLet us recall
that for ODEs of the form (2.1), cf. e.g. [1], it can be providttnear a non-hyperbofisteady state
the phase-space portrdiof the original system is topologically conjugatédith the phase-space
portrait of the linear variational systein= D f(z)(x — z). Analogously, instead of Egs. (2.4) we
can study this linear system with f (z) reflecting the Frechét derivative at However, in case
of DDEs the topological conjugation is not necessarily obsg. On the other hand, we can still
study the linearised system instead the original one. Mangon case of Egs. (2.2) calculating
the Frechét derivative we can treat the operdtas a function of two variables(t) andz(t — 7).
Therefore, the linearised system reads

of
833‘1

(2. 2)y(t) + §—f< By(t— ),

(2.9) Y=

’In fact, f needs to be only integrable in this case.

8Let us recall the geometrical interpretation of a derivatiff : R — R which allows to under-
stand the notion of “linearisation”. The derivativeoatx, is equal to the directional coefficient of
a tangentto the graph gfatz,. In small neighbourhood af, the values off can be approximated
by the values of this linear functiory + f/(zo)(x — o).

Steady staté is hyperbolic if there exists an eigenvalue, that is a sotutif the characteristic
equationdet (D f(z) — AI) = 0 with zero real part.

%Phase-space portrait reflects the dynamics of solutioteimector field described bfyin R™.

1This means that orbits of one system can be continuouslgfsemed into orbits of the other
one.



6 U. FORYS

wherey(t) = x(t) — z, 5L is the derivative off (x(t), z(t — 7)) with respect tar(t), while 2L is
the derivative with respeat(t — 7).
We look for non-trivial solutions of Egs. (2.9) of the fomit) = y,e*'. Therefore,

Myo€M = My + Myy,eM=")

with My = 9L(z, z), My = ££(z, ), and the characteristic equation reads

det (AL — M, — Mye ") = 0.
In general this characteristic equation has the form
(2.10) W) =P\ +Q(\)e =0,

whereP and(@ are polynomials andeg P = n > deg (). It should be noticed that Eq. (2.10) has
infinitely many zeros, that is the main problem in studyirapdity for DDEs. However, we do not
need to calculate all characteristic values but only chkelekistence of those with non-negative
real parts. If all eigenvalues have negative real parts, the locally asymptotically stable, while
existence of at least one eigenvalue with positive realypalts instability.

For particular system and specific parameter values we caly &ical stability using different
stability criteria. There are several criteria based orRthieciple of argument, like the Mikhailov,
Nyquist or integral criteria [55]. The Mikhailov criteridmas probably the most clear one. It was
proposed by Mikhailov for ODEs in [63], while the version fDDEs appeared in [45] and was
described in details and proved in [48]In [29] we clearly described the usage of this criterion for
several models, completed a small gap in the proof from [B#]extend the criterion for models
with integral delays. This criterion yields that in case ohrhyperbolic steady state all zeros
of Eq. (2.10) have negative real parts iff the change of agum arg W (iw) = nw/2 whenw
increases from O te-co. Itis easy to see thatg 17/ (0) = 0 orarg W (0) = w. Therefore, to obtain
stability the vectofReW (iw), 3W (iw)) must encircle the origin in the complex plane properly.

Example 2. Again consider Eq. (2.7) and assuimg 0. It has unique (forn # —b) trivial steady
statez = 0. Studying local stability we look for solutions of exponiahform z(t) = e that
yields

A=a+be M,

and hence the characteristic quasi-polynomial reads

W) =\—a—be™.
For A = iw, w > 0, we havel (iw) = iw — a — be"™7 yielding W (0) = —a — b. This means
that if —a — b > 0, thenarg W (0) = 0, while if —a — b < 0, thenargW (0) =7 (fora+b =0
this argument is undefined and assumptions of the Mikhailiber®on are not satisfied). We study
the curve(RW (iw), SW (iw)) for w increasing from0 to co. This shape depends anandb,

obviously. We have
SW(iw)  w — bsin(wT)

sinarg W (iw) = W(iw)|  [W(iw)|
oy = WW(iw) _ —a— beos(wr)
cosarg W (iw) = W (iw)| B W (iw)]

12The proof presented in [45] incomplete.
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with

|W (iw)| = \/w2 + a? + b% 4 2b(a cos(wT) — wsin(wT)).
Therefore,sinarg W (iw) — 1 andcosarg W (iw) — 0 implying arg W (iw) — /2 + 2ir as
w — +oo. This means that to obtain stability we requii&0) > 0 and/ = 0. Therefore, for
a+b > 0 the steady state is unstable and it can be stablefdr < 0. Moreover3W (iw) — +oo
andR(iw) oscillates betweera — b and—a + b. Hence, ifa + b < 0, thenarg W (iw) > 0 for all
w > 0, and thereforeé\ arg W (iw) = 7 /2 and the trivial steady state is stable independently of the
delay. This means that if the term without delay dominataléright-hand sidga| > b, and for
equation without delay term we have stability, then thibsits is preserved in the equation with
delay for any arbitrary, even very large, delay. Noticef tbaother values ofi andb we can get
the stability depending on the delay

2.1.3. Hopf bifurcation and stability switchedn case of ODEs it is well known that if a steady
state loses stability, then a periodic orbit can appeareasesult of Hopf bifurcation, cf. [61]. More
precisely, Hopf bifurcation is a qualitative change of thedal dynamics such that the increase
of bifurcation parameter leads to a periodic solution apgreee or disappearance. This periodic
solution is replaced by a steady state. The orbit of the parisolution encircles the steady state
in the phase-space. Both steady state and periodic orbibeastable or unstable. The Hopf
bifurcation theorem gives sufficient condition for a per@drbit appearance. Moreover, stability
of this orbit can be studied using the central manifold thear

Again similarly we can study Hopf bifurcation and arisingipdic orbits for DDEs, cf. [22,49].
The necessary condition for Hopf bifurcation is a changetalbiity of the steady state for that
Hopf bifurcation is studied. This change of stability isateld to the existence of an eigenvalue
with zero real part, because eigenvalues depend contilyumushe model parameters. In case of
Egs. (2.2) we can treat time delay as a bifurcation paramdtere precisely, changing the time
variablet — t/7 we obtain the model with delay equal to 1 and other model petars rescaled
by 7, and therefore the delay is the model parameter as well.itanis dependance implies that
if z iIs asymptotically stable for = 0, that is all eigenvalues have negative real parts, then it is
stable for smalt-. Similarly, if it is unstable forr = 0, that is there is an eigenvalue with positive
real part, then instability for smat > 0 is guaranteed. When there is an eigenvilue= iw,
w € RT, then the change of stability can occur and the charadtefistction (2.10) reads

W (iw) = P(iw) + Q(iw)e ™",
and therefore
W(iw) =0 = |P(iw)| = |Q(iw)].
Following the ideas presented in [18], cf. also [72], we detime auxiliary function

(2.11) F(y) = [Py = QUvY)*, y=uw?

and study zeros of'. Under some assumptions, cf. [18], any positive zgmf I’ defines the
eigenvaluew, w = /y and there is a corresponding sequence of detaykefined by Eqg. (2.10)
for A = iw, where the stability switch can occur. Moreover, the sigrftlfy) determines this
stability switch. Clearly, ifr is stable forr = 0 andy is the only zero of the auxiliary functiof,
thenF’(y) > 0 implies thatz loses stability for the first critical delay, and cannot gain it again
for larger delays. Other cases can be analysed similarly.

BIn fact we have two conjugated eigenvalues in this case.
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Now, we turn to the analysis of bifurcating periodic orbité/e use the approach proposed
in [22] basing on normalised bounded variation (NBV) funog!* The reason of usage NBV
approach instead of standard one, cf. [49], is that for NBVobk&ain formulae that are more
clear and slightly simpler to calculate than in standardeg@gh. In this analysis we additionally
assume thaf is of classC? and f(0) = 0 such that we study the trivial steady state of Eq. (2.4).
Moreover,f = f(x;, a), wherex is a bifurcation parameter. Because typically we are isteckin
bifurcations with respect to the delay, therefore to avambfems with the space, we rescale time
t — t/7 obtainingr = 1 in new time variable. Let now denote the Banach space of continuous
functions defined on the intervah 1, 0] with the complex values (the real-valued functions can be
treated as the functions with zero imaginary part). The lnogar functionf can be expressed as

f(zy, ) = L(zy, ) + Gy, @),

where L is a linear continuous map ahand G is a non-linear part off, G # 0. According

to the Riesz representation theorem, the ndapas an unique representation in terms of NBV
functions and Riemann-Stjelties integtalTherefore, the exists an unique NBV functiorsuch
thatL(¢) = [, d¢(0)¢(—0) for everys € C. This yields that NBV with the total variation norm is
a representation of the dual space&oHence, we can also write(¢) =< ¢, ¢ >, where< -, - >
reflects duality.

We study Hopf bifurcation and stability of periodic orbiisang when the trivial steady loses
stability, that is for some threshold valag of the bifurcation parameter. L&t(t), ¢ > 0 be the
semi-group defined by the equatien= L(z;) and A denotes the generator of this semi-group.
Hopf bifurcation occurs fory, if A hasiwy as an eigenvalue. To find eigenvalues we study study
the characteristic function

1
A\ @) = A —/ exp(—A0)dC (6, o),
0
The generatoA hasiw, as an eigenvalue, if there exigis= C, p # 0, such that
A(iwg, ag)p = 0,

and then the function(f) = exp(iwyf)p is the eigenvector fod at the eigenvalugy,. Letq € C,
q # 0 satisfies
qA (iwp, ap) = 0.
If A* is the adjoint operator, then it has, as its eigenvalue and the eigenvectosatisfies<
v, ¢ >= qD1A(iwg, ap)p, WhereD; A(\, «) is the derivative ofA with respect to the first variable

Yetf : [ab] bebounded andl : a« = zy < z; < ... < z; = b be a partition of the
interval [a, b]. DenoteV (11, f) = S\, | f(zi) — f(t.—1)|. The numbed/ (f) = supy V(IL, f) =
supy S | f(z;) — f(t.—1)| is called the variation of the functiofion the intervala, b).

Let ¢ be a function of bounded variation defined on the intejval]. We call this function NBV
(normalised bounded variation) §f0) = 0 and( is continuous from the right-hand side on the
open interval0, 1).

5Let f, g : [a,b] — R be bounded. If there exist& > 0 such thatve > 0 36 > 0 such
that for every partitiodl : a = 2o < z; < ... < z; = b of the intervalla, b] with the diam-
etero(II) < ¢ and every choice of the intermediate poitisc [z;—1,2;], 7 = 1,...,[, there is
IS £(&) (g(a) — g(a; — 1)) — K| < ¢, thenK is called the Riemann-Stieltjes integral pbn
the interval|a, b] with respect tgy.
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A. Moreover, iftiw, are simple eigenvalues, then, ¢ > can be normalised to 1. Then we
chooseq such that 1, ¢ > is normalised to 1 obtaining

qDlA(in, Oé(])p =1.

To study the type and stability of bifurcating periodic g@ua within the centre manifold, we
determine the third term, in the Taylor expansion of this solution. ff, is positive, then the
bifurcation is called supercritical and periodic solugsoexist fora > «y. If additionally the
steady state is stable far < «g, then the bifurcating periodic solution is stable withie ttentre
manifold. Moreover, if no spectrum of is in the right half-plane, then the centre manifold is
attractive. Therefore, the periodic solution is asymggity stable. Ifu, is negative, then the
bifurcation is called subcritical and periodic solutiomsséfor o < «g, and if as before the steady
state is stable far < «y, then the periodic solution is unstable.

The third termu, can be calculated as

B Rec
Re (D2 A(iwg, ag)p)’

wherep, q are chosen as above; denotes the derivative with respect to the bifurcation atar
a, and

1 - _
¢ = 5aD}G(0,00)(6,6.9) + aDIG (0, av) (45(-.0). ¢) + éqD%Gm, o) (Yo (-, 2ito), ) ,

whereD?, i = 2,3 denotes the derivative of thth order with respect to the first variablgand

%51 (97 a) = exp(a@) (A(av aO))_lD%G(Ov Oéo)(¢, ¢1)

Example 3. As before consider Eq. (2.7) with> 0. We haveliw — a| = |be~*|, and therefore
F(y) = y + a*> — b*. The auxiliary functionF" has positive zerg, = —a* + v* iff a*> — b* < 0
and thenF”’(y,) > 0. This means that stability switches can occur only when|a| and only the
switch from stable to unstable steady state is possible.adewyforr = 0 the trivial steady state
is stable fora + b < 0 and unstable fot + b > 0. Let us consider two cases:

e a > 0 implyinga + b > 0, that is the trivial steady state is unstable for 0 and remains
unstable for all- > 0;
e a <0,a# —b, implying
a + b > 0 and the trivial steady state is unstable forzalt 0 again;
a + b < 0 and there is a change of stability from stability to instépitor 7 = 7.,
wherer, is the first delay satisfying + bsin(w.) = 0 anda + b cos(w.) = 0.

In case of the linear equation Eq. (2.7) Hopf bifurcationrazroccur, obviously. The reader can
find examples of Hopf bifurcation analysis in Section 4.

2

2.1.4. Global stability and Lyapunov functional§tudying global stability we usually apply the
method of Lyapunov functionals, cf. e.g. [2] in the contekGDEs and [53] in the context of
DDEs. Lyapunov functional is a smooth function defined ongpace of solutions having some
special properties. The Liapunov theory for ODEs impliegthZ : R* — R", L(z) > 0 and
L(z) =0 < =z =z, wherez is the steady state under studyis strictly decreasing along the
system trajectories, thenis globally stable. Slightly more strong conditions areuiegd in case
of infinite dimensional dynamical systems like DDEs.
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In general, the most typical is Lyapunov-LaSalle theoreat tian be used also in case of ODEs
e.g. whenf is not strictly decreasing. More precisely, in case of DDits theorem yields that if
the system has Lyapunov functional, then any solution racetiéd byA/ that is an invariant subset
of the set{y € C : L'(¢) = 0}, whereL’ is the derivative of the Lyapunov functional along the
system trajectory.

Example 4. Coming back to Eq. (2.7) with > 0, we study stability of the trivial steady state, and
hence we assume< 0. We define a Lyapunov functional as

L(¢) = ¢*(0) + C/_O *(s)ds, C > 0.
It is obvious that foky € C this functional satisfied(¢) = 0 iff ¢ = 0. Moreover,
L(z(t)) = (2a + C)22(t) + 2bx(t)a(t — ) — C2®(t — 1),

that isL(z(t)) is a quadratic form of(t) andxz(t — 7). Now, we need to find’ > 0 (if possible)
such that for chosemandb L is negatively defined. Therefore, we need to study the matrix

—(2a+0C) —b
—b c )
that is positively defined foka + C' < 0 and(2a + C)C + b* < 0. Let us choos€' = |a|. Then
2a + |a| = a < 0yieldingala| + b* = —a? + b* < 0 for |a|] > b. We see thal./(¢) = 0 for
everyp € C such thatp(0) = ¢(—7) = 0. However, the only invariant subset@fsatisfying this

condition isM = {0}. Therefore, if the trivial steady state is stable indepatigieon the delay,
then it is globally stable.

3. SMPLE MODELS WITH DELAY IN APPLIED SCIENCES

In this section we present a short introduction to DDEs &gpln biology and medicine in
general. The beginning of such applications is typicalgoagated with the Hutchinson equation.
In 1948 G.E. Hutchinson proposed [52] the delayed versidhefogistic equation.

3.1. Classic logistic equation with delay in population dynamics. In his article [52] Hutchin-
son applied the logistic equation in the description of itettciry ecological systems. The Hutchin-
son equation was used in that context many times in the Segesmd eighties of XX century.
Moreover, except linear equations, it is the most freqyensied example of DDE properties,
cf. [46,49,55]. On the basis of this equation researchad to explain many experiments where
the oscillations appeared. The Hutchinson equation reads

@) =rve (1- 21,

where N (t) denotes the size of population in study in the present tintae derivativeZY ()
describes the change of this size at tim&’ (¢t — 7) is the size in some past time- 7, 7 > 0 is the
magnitude of delay and in population models it is typicadijated with the maturation time or the
length pregnancy period,reflects fertility of the population and is typically calléte (intrinsic)
birth or reproduction rate, whil& is the carrying capacity for the population.

Now, we present some specific examples of the applicatiorgo{¥1), cf. [64]. May (1975)
used this equation to model oscillations in the size of pajpah of Australian fly Lucilla cupring).
The experimental period of oscillations was 35—-40 days.ukéion from a larva to a fly was taken
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FIGURE 2. Sample solutions of Eqg. (3.1) withr = 2.1, 7 = 9 (right) andK = 100
(left), K = 200 (right). In both graphs we observe the same quantitativeuaiyn
ics, however doubling of the carrying capacityimplies doubling of the solution
amplitude.

into account in the model. For parameters satisfying= 2.1 and the delay = 9 days the period
of solutions is equal to 40 days. The solution of Eq. (3.1 hvwparametersT = 2.1, 7 = 9 and
K = 100 is presented in Fig. 2 (left). In reality, the maturation&ims near 11 days, however
such fitting of that simple models seems to be satisfactoptteB fitting is possible for slightly
more complex model (Gurney et al. 1980). It should be nottbad the oscillatory dynamics in
the model described by Eq. (3.1) does not depend on the nudgnitf carrying capacity and this
effect is observed in experiments. Graphs presented ir2Higstrated this feature: the right-hand
graph was prepared for the carrying capacity equal to twareymg capacity comparing to the
left-hand graph. Solutions differ only quantitatively, vehthe qualitative description is the same
in both graphs.

400

FIGURE 3. Solutions of the Hutchinson equation (3.1) with= 2.1, K = 100
andr = 1, 5, 12, 15, respectively.
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Using this simple model we explain the possible influencénoétdelay on the model dynamics.
Fig. 3 shows the solutions of Eq. (3.1) with the same parameied increasing delay. For small
delays the dynamics is similar to the original logistic g that is solutions monotonically tend
to the carrying capacityk, cf. the left-hand top graph in Fig. 3. With increasing datagillations
appear. These oscillations are dumping at the beginnigtthiand top graph in Fig. 3), and
become un-dumping for larger delays, cf. bottom graphs gn Ei Notice, that increasing delay
yields the increasing both the amplitude and period of tzm@hs. Hence, in this case the delay
has an destabilising effect, meaning that the steady sttteedor small delays becomes unstable
for larger ones. For larger delays solutions oscillate agahe steady state. More precisely;(f)
is a periodic solution of Eqg. (3.1), then

/;;T)i—x:r/: <1—x(8[;T>>ds:>lnxx(£)> :r<T—/OTx<8[;T>dS>,

whereT is the period of solution, and therefaré)) = «(7"). We obtain

1 T
Tmean= T/o z(t)dt = K.

The same Hutchinson equation was used by May (1981) to thesitre dynamics of lemming
population in the Churchil District in Canada. In this motle? delay reflect a pregnancy period
(about0.72 year). Similarly Stritzaker (1975) modelled vole popuwatin Scottish Mountains,
however he used more complex system with the predationtéfieladed. Myers and Krebs (1974)
studied cycles for rodent populations that last typicall¢ $ears.

Another type of the delayed logistic equation was propose&dhuster & Schuster [71] to
reflect the cancer cells dynamics, we describe it in the nestian. Moreover, from mathemat-
ical point of view we can introduce the delay in several défg ways, cf. [54], however from
biological point of view only specific models can be justifiedle discuss that topic in the last
section.

Except the simple models based on the Huntchinson equatamy wther models was used in
population dynamics, the interested readers can referetdetkt-books of Gopalsamy [46] and
Kuang [55], cf. also [20, 75, 78].

3.2. Simple models of red blood cell production. Many physiological disorders appear in asso-
ciation with periodic or oscillatory dynamics. Such dynas¢an be caused by time delays in the
physiological process taken into account. Hence, DDEs fie® aised in modelling of different
diseases with oscillatory dynamics.

One of the most important processes for which the time dedayndoubtedly present and
causes oscillations is a red blood cell production. Thertbesdelay about 6 days between the
decrease in red blood cells number in blood and the releasewfones from bone marrow to
fill this loss. Probably the first model proposed in this cahte@as constructed by Viawska-
Czyzewska and Lasota in [77]. However, at the same time MackedyGlass studied a similar
model, cf. [58, 59, 64]. It should be noticed that the delayextiel proposed in [77] is a reduced
version of more complex model that has good biological figstiion. However, Mackey & Glass
model has become popular because chaotic dynamics is eddensome parameter values. Both
Wazewska-Czyewska & Lasota and Mackey & Glass equations describe ceanfged blood
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cells number in circulating blood. Le{t) denote the total number (density) of red blood cells in
blood at timef. Both models can be written in the following general form

0 = —elt) + f(elt 7)),

where~ reflects the mean death rate of red blood cells ardescribes the release from bone
marrow. In case of Weewska-Czyewska & Lasota modefy ;. (z) = gexp(—vyz) (wherey
characterises excitability of a hematopoietic system, araflects an organism oxygen demand),
while Mackey and Glass chogg¢(z) = )\a:fiﬁm with the Hill parametern yielding the diversity
of the model dynamics.

One of the symptoms of leukemia is oscillatory behaviour bil@blood cells. In [58] the reader
can find the comparison between clinical data for a patietit @hronic leukemia and solutions of
Eq. (3.2) with the functiorf,,¢. For this model the sequence of bifurcation leading to dbot
dynamics is observed. Fig. 4 presents solutions of this vaitle parameters = a =1, A\ =7 =
2 andm changing fromm = 7 tom = 19. With increasing bifurcation parameter we observe
gualitative change of the model dynamics from simple sitypg-oscillations forn = 7, through
more complex periodic solutions, to aperiodic solutions/fo= 10, 11, and again to periodic
dynamics. Graphs in Fig. 4 reflect the dependance betwg@gat present time andc(t — 7) at
previous timeg — 7. Such type of graphs are sometimes called phase-porwaidiEs. However,
it should be noticed that the real phase-space is infiniteedsional in this case, and therefore
cannot be reflected graphically. For comparison in Fig. 5 vesent graphs of solution$t) as
functions of timet for m = 7 andm = 10. It should be emphasised that Eq. (3.2) with,
was used by M. Weewska-Czyewska to propose a better treatment of patients with drdgeed
anemia, cf. [76]. She helped many patients using this méthod

Similarly, dynamics of C@density in blood vessels can be modelled. On that basis waygan
to explain respiratory disorders in Cheyne-Stokes respiraln this case the delay reflects the gap
between oxygenation of blood in lungs and getting the sightilis oxygenation by chemorecep-
tors in the brain stem.

(3.2)

3.3. Other models. DDEs are extensively used in epidemiological and immunokdgnodelling.
Some results on immune system modelling are presented ingkiesection. Introduction to
the description of the role of time delays in immune systendetiong can be found e.g. in [21]
and [60].

Interesting combination of population dynamics, econognawth and epidemiological model
was proposed by Cooke and Yorke in [19]. Many interestingrgdas of delayed epidemiological
models can be found in [64], in particular models of HIV dynesrby Nelson are very interesting
and bringing some insight in the general knowledge aboutAID

%There is no one accepted definition of chaos. Here, we useotimnrof deterministic chaos
which is observed in case of deterministic models havindy wegular, periodic and irregular,
aperiodic solutions.

The method is based on the model conclusions. The drug-tdanemia can be treated
maintaining a low level of red blood cells that cab be achddweinfluencing the rate of maturation.
In order to decrease the speed of maturation of red blood aghatient should breathe oxygen-
enriched air.
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FIGURE 4. Solutions of Eq. (3.2) in the space(t), c¢(t — 7)) with fy;c and pa-
rametersy = a = 1, A\ = 7 = 2andm = 7, 7.5, 8, 10, 12 and 19, respectively.

FIGURE 5. Solutions of Eq. (3.2) with the functiof,;; and parameterg=a = 1,
A =71 =2andm = 7 (left), m = 10 (right).

New interesting branch of dynamical systems applicatism®nnected with interpersonal rela-
tionships and love affairs dynamics. Simple linear appnaatthe basis of ODEs system of equa-
tions was described by Rinaldi [69]. Probably the best knannresults of Gottman et al. [47]
popularised by Murray in his text-book [64], where the agto of discrete dynamical systems
to model the dynamics of marriage was used. In the contextofdm relationships DDEs was
used in [56]. Our study presented in [3] was focused on ptessthbility switches with increasing
delay'®. It should be noticed that to obtain multiple stability sshiés we need to consider at least
two delays for single DDE equation or a system of two DDEs witle discrete delay, while for
one equation with one discrete delay only one stability&wi$ possible.

8Stability switch for some critical values of delay means thange from stable steady state
to unstable one or vice versa. Typically in case of non-limeadels it is associated with Hopf
bifurcation.
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Below we include one more example of linear system of two ggna with more than one
stability switch, for more details cf. [3].
Let us consider

(33) .Z’(t) = allx(t_T) + al?y(t)7

y(t) = anx(t) + any(t)
The dynamics of Egs. (3.3) depends on the coefficientsobviously. We can prove that if
la1aao1| > |ajiase|, then multiple stability switches are possible. In Fig. 6 see examples of
such switches for the set of parametgrs, a2, as;, ass] = [5,—4,3, —1]. ForT = 0 and small
values of delays the origin is unstable, then the first charfigability occurs forr);, ~ 0.522 at
which periodic solutions are present. Betwéeh, 73,), 72, ~ 0.722, the origin is stable, and after
the second switch it remains unstable for larger delays.

tou=0.5 Tav=0.522 tou=0.54

2 2
4

2 1 1

£ 0 = 0 = 0

2 1 1
-4

2 2

2 0 2 1 0 1 1 0 1
() () ()
tov=0.722 Taw=0.75
2 2

x(t) x(t)

FIGURE 6. Trajectories of Egs. (3.3) in the spate y) around two stability
switches. For small delays we observe instability (lefiytdhen stability switch
(middle-top) to stability (right-top), again stability #ah (left-bottom) to instabil-
ity (right-bottom).

REFERENCES

[1] V.. Arnold, Ordinary Differential EquationsThe MIT Press, 1978.

[2] E.A. BarbaszinlLyapunov Functionn Russian), Nauka, Moscow, 1970.

[3] N.Bielczyk, U. Fong, T. PlatkowskiDynamical models of dyadic interactions with deldyMath. Sociology,
37 (04), 223-249 (2013).

[4] M. Bodnar, The nonnegativity of solutions of delay differential edquad, Appl. Math. Letters, 13 (6), 91-95
(2000).

[5] M. Bodnar, U. For, Behaviour of Marchuk’s model depending on time delat J. Appl. Math. Comp. Sci.,
10 (1), 101-116 (2000).

[6] M. Bodnar, U. For, Periodic dynamics in the model of immune systappl. Math. (Warsaw), 27 (1), 113-
126 (2000).

[7] M. Bodnar, U. Fong, Time delay in necrotic core formatipiMath. Biosci. and Engineering, 2 (3), 461-472
(2005).



16

U. FORYS

[8] M. Bodnar, U. For, Three types of simple DDE’s describing tumour growthBiol. Sys., 15 (4), 453-471
(2007).
[9] M. Bodnar, U. For, Influence of time delays on the Hahnfeldt et al. angiogermasidel dynamicsAppl.

Math. (Warsaw), 36 (3), 251-262 (2009).

[10] M. Bodnar, U. Forg, Global stability and Hopf bifurcation for a general classdelay differential equations
Math. Methods Appl. Sci., 31 (10), 1197-1207 (2008).

[11] M. Bodnar, U. Forg, N. Bielczyk,Delay can stabilize: Love affairs dynamj@ppl. Math. and Comp., 219,
3923-3937 (2012).

[12] M. Bodnar, U. Forg, M.J. Piotrowska, J. Poleszczuk,simple model of carcinogenic mutations with time
delay and diffusionMath. Biosciences and Engineering, 10 (3), 861-872 (2013)

[13] M. Bodnar, U. Forg, J. Poleszczukinalysis of biochemical reactions models with deJalysMath. Anal.
Appl., 376, 74-83 (2011).

[14] M. Bodnar, M.J. Piotrowska, U. FosyTractable Model of Malignant Gliomas Immunotherapy witls@ete
Time DelaysMathematical Population Studies 21, 127-145 (2014).

[15] D. Bratsun, D. Volfson, L. Tsimring, J. Hast®elay-induced stochastic oscillations in gene regulati®roc.
Natl. Acad. Sci. USA, 102, 14593-14598 (2005).

[16] N.F. Britton,Reaction-diffusion equations and their application tolbgy, Academic Press, New York, 1986.

[17] H.M. Byrne, The effect of time delay on the dynamics of avascular tumawty, Math. Biosci., 144, 83-117
(1997).

[18] K.L. Cooke, P. van den Driessch@n zeros of Some Transcendental Equati®skcialaj Ekvacioj, 29, 77-90
(1986).

[19] K. Cooke, J. YorkeEquations modeling population growth, economic growthngohea epidemiologyin
Ordinary differential equations, 35-55, Academic PressyNork, 1972.

[20] C. Cushing,Integrodifferential equations and delay models in popolatdynamicsin Lecture Notes in
Biomath., 20, 1977.

[21] B. Dibrov, M. Livshits, M. VolkensteinThe effect of a time lag in the immune reactionLecture Notes in
Control and Information Sci., 18, 87-94 (1979).

[22] O. Diekmann, S. van Giles, S. Verduyn Lunel, H.O. Walieelay Equations: Functional-, Complex-, and
Nonlinear AnalysisSpringer-Verlag, New York, 1995.

[23] P.C. Fife,Mathematical aspects of reacting and diffusing syste3psinger-Verlag, Berlin, 1979.

[24] U. Forys, Interleukin mathematical model of an immune syst&miol. Sys., 3, 889-902 (1995).

[25] U. Forys, Global analysis of Marchuk’s model in a case of weak immustesy Math. Comp. Modelling, 25
(6), 97-106 (1997).

[26] U. Fonys, Global analysis of Marchuk’s model in case of strong immuwstesn J. Biol. Sys., 8 (4), 331-346
(2000).

[27] U. Forys, Hopf bifurcation in Marchuk’'s model of immune reactipdath. Comp. Modelling, 34, 725-735
(2001).

[28] U. Forys,Marchuk’s model of immune system dynamics with applicatiommour growthJ. Theor. Medicine,
4 (1), 85-93 (2002).

[29] U. Fonys, Biological delay systems and the Mikhailov criterion oftslidy, J. Biol. Sys., 12 (1), 1-16 (2004).

[30] U. Forys, Global stability for a class of delay equatign&ppl. Math. Letters, 17, 581-584 (2004).

[31] U. Forys, Time delays in one-stage model for carcinogenesis mutgtinrProceedings of the XI National
Conference on Application of Mathematics in Biology and ééte, Zawoja, September 2005.

[32] U. Fonys, Stability and bifurcations for the chronic state in Marctaiknodel of an immune systeth Math.
Anal. Appl., 352, 922-942 (2009).

[33] U.Forys, M. BodnarTime delays in proliferation process for solid avasculantur, Math. Comp. Modelling,
37,1201-1209 (2003).

[34] U. Forys, M. Bodnar,Time delays in regulatory apoptosis process for solid ausaumour, Math. Comp.
Modelling, 37, 1211-1220 (2003).

[35] U. Forys, M. Bodnar, J. PoleszczuKggativity of delayed induced oscillations in a simplednBDE, Appl.
Math. Letters, 24, 982-986 (2011).



DELAYED EQUATIONS IN APPLICATIONS 17

[36] U. Forys, M. Kolev, Time delays in proliferation and apoptosis for solid avdactumour, in Mathematical
Modelling of Population Dynamics, ed. R. Rudnicki, Bana@n@r Publications, 63, 187-196 (2004).

[37] U. Fons, Y. Kheifetz, Y. KoganCritical-point analysis for three-variable cancer angigesis modeMath.
Biosci. Engineering, 2 (3), 511-525 (2005).

[38] U. Forys, A. Marciniak-Czochral,.ogistic equation in tumour growth modellintmt. J. Appl. Math. Comp.
Sci., 13 (3), 317-325 (2003).

[39] U. Forys, M.J. PiotrowskaTime delays in solid avascular tumqum Proceedings of the X National Confer-
ence on Application of Mathematics in Biology and Mediciéwiety Krzyz, 2004.

[40] U. Forys, M.J. PiotrowskaMGS immunotherapy: simplified model with delaysProceedings of the XVI
National Conference on Application of Mathematics in Bgand Medicine, Krynica Gorska, 2010.

[41] M.J. Piotrowska, U. For§, Analysis of the Hopf bifurcation for the family of angiogsisemodelsJ. Math.
Anal. Appl., 382, 180-203 (2011).

[42] U. Forys, M.J. Piotrowskadnalysis of the Hopf bifurcation for the family of angiogsisenodels Il: The case
of two nonzero unequal delaysppl. Math. and Comp. 220, 277-295 (2013).

[43] U. Fons, J. Poleszczuld delay-differential equation model of HIV related can@emune system dynamjcs
Math. Biosci. Engineering, 8 (2), 627-641 (2011).

[44] U. Fonys, J. Poleszczuk, T. Lid,ogistic equation with delay and impulsive treatmeviathematical Popula-
tion Studies, 21 (3), 146-158 (2014).

[45] L. Gnoenskij, G. Kamenskij, L. Els’gol'dylathematical basis of control theofyn Russian) Nauka, Moscow,
1969.

[46] K. GopalsamysStability and oscillations in delay differential equat®af population dynami¢cKluwer Aca-
demic Publishers, Dordrecht, 1992.

[47] J. Gottman, J. Murray, C. Swanson, R. Tyson, K. Swan§ba,mathematics of marriage: dynamic nonlinear
models Westwiev Press, 1994.

[48] H. Gorecki, A. KorytowskiAdvances in optimization and stability of dynamical systek@GH, Krakéw, 1993.

[49] J. Hale, Theory of functional differential equationSpringer-Verlag, New York, 1997.

[50] J. Hale, S.M.V. Lunelintroduction of functional differential equationSpringer-Verlag, Berlin, 1993.

[51] D. Henry,Geometric theory of semilinear parabolic equatip8pringer-Verlag, Berlin, 1981.

[52] G.E. HutchinsonCircular casual systems in ecolaghnn. N.Y. Acad. Sci., 50, 221-246 (1948).

[53] V. Kolmanowskij, V. NosovStability of functional differential equationdcademic Press, Londyn, 1986.

[54] R. Kowalczyk, U. Forg, Qualitative analysis on the initial value problem to theikig equation with delay
Math. Comp. Modelling, 35 (1-2), 1-13 (2002).

[55] Y. Kuang, Delay differential equations with application in populati dynamics Academic Press, Boston,
1993.

[56] X. Liao, J. RanHopf bifurcation in love dynamical models with nonlineauptes and time delay€haos,
Solitons & Fractals, 31 (4), 853-865 (2007).

[57] N. MacDonald,Time lags in biological modelsn Lecture Notes in Biomath., 27, Springer-Verlag, Berlin
1978.

[58] M.C. Mackey, GlassQscillations and chaos in physiological control syste®sience, 197, 2870289 (1977).

[59] M.C. Mackey,Some models in hemopoiesis: Predictions and problen&omathematics and Cell Kinetics,
23-38, ed. M. Rotenberg, Elsevier/North Holland (1981).

[60] G.l. Marchuk,Mathematical models in immunolo@y Russian), Nauka, Moscow, 1980.

[61] J.E. Marsden, M. McCrackeiihe Hopf bifurcation and its applicationSpringer-Verlag, New York, 1976.

[62] J. Miekisz, J. Poleszczuk, M. Bodnar, U. Fergtochastic models of gene expression with delayed degrada-
tion, Bull. Math. Biol., 73, 2231-2247 (2011).

[63] A. Mikhailov, New method of study of control systems with feedback Jdapematika i Telemekhanika, 4-5
(1938) (in Russian).

[64] J.D. Murray,Mathematical biology. 1, An introductio®pringer-Verlag, New York, 2002.

[65] M.J. PiotrowskaHopf bifurcation in solid avascular tumour growth model lvttvo discrete delaysMath.
Comp. Modelling, 47, 597-603 (2008).

[66] M.J. Piotrowska, U. Fors, Analysis of the Hopf bifurcation for the family of angiogsisemodelsJ. Mathe-
matical Analysis and Applications, 382, 180-203 (2011).



18 U. FORYS

[67] M.J. Piotrowska, U. Fors, The nature of Hopf bifurcation for the Gompertz model wittagls Math. Comp.
Modelling, 54, 2183-2198 (2011).

[68] M.J. Piotrowska, U. Fory, M. BodnarDelayed logistic equation with treatment functjiamProceedings of the
XVII National Conference on Applications of MathematicsBiology and Medicine, Zakopane-Koielisko,
2011.

[69] S. Rinaldi,Love dynamics: The case of linear couplappl. Math. Comput., 95, 181-192 (2-3) (1998).

[70] F. RotheGlobal solutions of reaction-diffusion systerspringer-Verlag, Berlin, 1984.

[71] R. Schuster, H. Schust&gconstruction models for the Ehrlich Ascites Tumor fomtloeisein Mathematical
Population Dynamics, 2 335-348, ed. O. Arino, D. Axelrod,liimmel, Wuertz, Winnipeg, Canada, 1995.

[72] J. Skonieczna, U. Fosy Stability switches for some class of delayed populationatspéppl. Math. (War-
saw), 38, 51-66 (2011).

[73] J. SmollerShock waves and reaction-diffusion equatidysringer-Verlag, New York, 1994.

[74] W. Szlenk,An Introduction to the theory of smooth dynamical systdtgN, John Wiley & Sons, Inc., 1984.

[75] P. Wangersky, W. Cunninghamime lag in prey-predator population modgEcology, 38, 136-139 (1957).

[76] M. Wazewska-CzyewskaErythrokinetics Polish Medical Publishers, Warsaw, 1981.

[77] M. Wazewska-Czgewska, A. Lasotaylathematical problems of red blood cells dynamics modgllppl.
Math. (Warsaw), 6, 23-40 (1976) (in Polish).

[78] A. Zaharov, J. Kolesov, A. Spokojnov, N. Fedotaheoretical explanation of ten years oscillation cycles of
guantities of animals in Canada i lakoutien Studies in stability and oscillations, 82-131, laret14982.

URSzULA FORYS

INSTITUTE OFAPPLIED MATHEMATICS AND MECHANICS, FACULTY OF MATHEMATICS,, UNIVERSITY OF WAR-
SAW, BANACHA 2, 02-097 WARSAW, POLAND

E-mail addressur szul a@ri nmuw. edu. pl



