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ABSTRACT. In this paper we make a review of analysis of delay differential equations in the context
of applications. We illustrate described methods using simple examples known from biomathemati-
cal literature.

1. INTRODUCTION

Recently, delay differential equations (DDEs) are frequently used in the description of various
natural phenomena. There are models known from years, like the Hutchinson equation (cf. [52]),
which was proposed in 1948 and has been studied in many paper and text-books [46, 49, 55], as
well as many newer models; cf. [3, 11] in the context of romantic relationships, [5, 6, 24–28, 32]
in the description of immune reactions, [13, 15, 35, 62] for biochemical reactions modelling, and
many papers devoted to various stages of tumour growth and treatment, such as [7,8,17,33,34,36,
38,39,44,65–68] describing avascular stage of tumour growth, [37,41,42] for vascular stage, [12,
14,31] for carcinogenic mutations, [40,43] for immunotherapy of cancers, and [10,30] describing
dynamics of some class of DDEs resulting from the analysis oftumour growth. Notice, that most
of the cited papers are the results of research in our group, but the number of papers involving
models with delays still increase tremendously.

Although many properties of DDEs are similar to ordinary differential equations (ODEs), there
are also significant differences between these types of equations. In this article we present some
basic mathematical properties of DDEs in the general context of dynamical systems. We compare
these properties with standard theory of ODEs and give some remarks on the theory of functional
differential equations defined in Banach spaces.

2. FINITE AND INFINITE DIMENSIONAL CONTINUOUS DYNAMICAL SYSTEMS

Finite dimensional dynamical systems are typically generated by ODEs of the following form

(2.1) ẋ = f(x), x ∈ R
n, n ∈ N,
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whereẋ = dx
dt

, n is the number of equations in the system and the dimension of the dynamical
system as well. Any solution of system (2.1) can be expressedas a function of timexx0

(t) for
fixed initial vectorx0, but from the other hand, as a function of initial dataxt(x0) for fixed t. If
the solution is defined for any initial datax0 ∈ R

n andt ∈ R, thenxt : Rn → R
n, t ∈ R, defines

a family of functions. This family forms a dynamical system of dimensionn. In the context of
biomedical applications typically initial data and solutions should be non-negative. In this case the
dynamical system is defined on(R+)n, whereR+ = {(x1, . . . , xn) ∈ R

n : xi ≥ 0, i = 1, . . . , n}.
Moreover, we look for forward solutions as we are interestedin predictions of the future system
dynamics. Hence, assuming that initiallyt = 0, we are looking for solutions of the system fort > 0
and the family of solutions is defined fort ≥ 0. Formally, we distinguish between dynamical
and semi-dynamical systems that are defined for everyt ∈ R or t ∈ R

+, respectively, cf. [74].
However, we call such families dynamical systems, for simplicity, although they are defined only
for t ≥ 0.

Infinite dynamical systems, cf. [51], can be generated by delay differential equations or reaction-
diffusion equations. Such systems are generated in the sameway as in case of ODEs, the only
difference is connected with the functional space on that the system is defined. In this case the
functional space is infinite dimensional.

The most typical system of DDEs applied in biomedical modelling reads

(2.2) ẋ = f(x(t), x(t− τ)),

whereẋ is the right-hand side derivative with respect to timet, τ > 0 denotes time delay, cf.
e.g. [22,49,50] and [46,55,57] in the context of biomedicalmodelling. Typically, for system (2.2)
we define initial data(0, x0) for x0 : [−τ, 0] → (R+)n continuous, wheren is the number of equa-
tions, as before. To obtain a dynamical system we need to havesolutions of the same functional
form defined on the same space as initial data. Letx(t), t ≥ 0, be the solution of Eq. (2.2) for
some initial datax0 and define

xt(h) = x(t+ h), h ∈ [−τ, 0], t ≥ 0.

Thenxt : [−τ, 0] → R
n is the part of solution defined on[t− τ, t], but it has a functional form we

are interested in. Therefore, we define our dynamical systemon the space of continuous functions
defined on the interval[−τ, 0].

Similarly, we can generate infinite dimensional dynamical system on the basis of reaction-
diffusion equations, cf. e.g. [16, 23, 51, 70, 73]. RDEs belongs to the class of partial differential
equations. In the context of biomedical applications such equations describe not only the pop-
ulation size but also the dependence on space, age or other important quantities. We have two
independent variables: timet and positionp, while the dependent variable isx = x(t, p). In
general, for PDEs, apart from initial data we need to define boundary conditions. Typically, for
bounded regionU , that is equivalent to a box inRn, depending on the number of equations, we
consider two types of boundary conditions:

• the Neumann BC, when the normal outside derivative ofx equals0 at the boundary ofU
(zero-flux bc);

• the Dirichlet BC, whenx equals0 at the boundary ofU .

It should be noticed that there are also mixed BC like the Robin BC, used in more complex cases.
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The process of diffusion means a random movement of individuals and is described by the
Laplace operator∆x=

∑k
i=1

∂2x
∂p2

i

, wherep = (p1, . . . , pk) denotes the position andk is the dimen-
sion of space, where individuals live, in realityk = 1, k = 2 or k = 3. In RDEs we combine
the process of diffusion with some reaction described by a functionf(x) reflecting the mean sys-
tem dynamics (that is the dynamics without diffusion described by ODEs). This function is called
a kinetic function or just kinetics. Hence, the simplest RDEreads

(2.3)
∂x

∂t
= f(x) +D∆x,

whereD > 0 is the diffusion coefficient and we consider Eq. (2.3) with the appropriate BC on
the boundary ofU . To solve Eq. (2.3) with some BC we also need to describe initial data, that
meant0, typically t0 = 0, andx0 which is a function defined onU and fulfilling the assumed BC1.
Therefore, similarly to DDEs, we can define some dynamical system in the appropriate functional
space, e.g. in Sobolev spaceH1 or H1

0 , depending on the BC, the Neumann or Dirichlet BC,
respectively.

Figure 1 illustrate the schematic difference between initial data and solutions of single ODE,
n = 1, (Eq. (2.1), left), DDE (Eq. (2.2), middle) and RDE (Eq. (2.3), right).

FIGURE 1. The difference between initial data and solutions of ODE (left), DDE
(middle) and RDE (right). For ODE it is a point (inR): x0 is the initial point and
x(t) is the solution at some timet, both point are marked by dots in the graph. For
DDE it is a (continuous) functionx0 defined on[−τ, 0]. The solutionxt for this
initial data is also a function defined in the same interval. Both functions (the initial
functionx0 and the part the part of solution reflectingxt after the shift to[−τ, 0])
are indicated by bold lines. Similarly for RDE, both initialdata and solutions are
functions. However, now initial datax0 is a function ofp and the solution at timet
is also such function. Hence, we havex(t, p). The initial data and solution at time
t are indicated by solid lines, again.

2.1. How to analyse mathematical models based on dynamical systems? Every mathemati-
cal model should be analysed in the context of correctness. Therefore, we need to study basic
properties like:

• existence and uniqueness of solutions;
• non-negativity for non-negative initial data;

1In biomedical applications an initial function frequentlydoes not satisfy the BC, however dif-
fusion quickly “smooths” so we can assume the BC is satisfied from the very beginning.
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• possibility of a solution extension2;
• local stability of steady states3;
• possibility of global stability4;
• existence of periodic solutions;
• bifurcations5.

It should be noticed that global (inR+) existence, uniqueness and non-negativity of solutions allow
to define an appropriate dynamical system and use the dynamical systems tools.

2.1.1. Existence, uniqueness and non-negativity of solutions of DDEs. Existence and uniqueness
of solutions are typically a simple consequence of the form of right-hand side of the system. For
autonomous DDEs in general form

(2.4) ẋ(t) = f(xt),

wheref is an operator defined on Banach spaceC of continuous functionsϕ : [−τ, 0] → R
n

equipped with standard supremum norm, we are able to prove similar theorems as for autonomous
ODEs of the form (2.1), cf. e.g. [49]. Hence, iff is continuous, then solutions of Eqs. (2.4) exist,
while if it locally Lipschitz6, then solutions are unique.

On the other hand, non-negativity and global existence of solutions should be study for every
model separately. However, for systems of the form (2.2) we can use so-called step method, that is
the method of mathematical induction adapted for DDEs. Moreprecisely, letϕ ∈ C be an initial
function and considert ∈ [0, τ ]. Then Eq. (2.2) reads

(2.5) ẋ(t) = f(x(t), ϕ(t− τ))

becauset− τ ∈ [−τ, 0] andx = ϕ in this interval. We see that Eq. (2.5) is non-autonomous ODE
and we can analyse it using standard tools of ODEs. Hence, if the solution of Eq. (2.5) with initial
data(0, ϕ(0)) exists for allt ∈ [0, τ ], then we can continue such procedure fort ∈ [τ, 2τ ]. In
general, assume thatxk : [(k − 1)τ, kτ ] → R

n is a continuous solution of Eq. (2.2) in the interval
[(k − 1)τ, kτ ] and consider

(2.6) ẋ(t) = f(x(t), xk(t− τ)), t ∈ [kτ, (k + 1)τ ].

If for arbitrary k there exists a continuous solutionxk+1 : [kτ, (k + 1)τ ] → R
n, then the method

of mathematical induction implies that the solution for initial data(0, ϕ) exists globally (inR+).
Similarly, we can use this method to study uniqueness and non-negativity of solutions.

2For semi-dynamical systems it means that we can extend solutions for everyt ≥ 0. Notice,
that even for ODE it is sometimes not possible to extend the solution for everyt ≥ 0. If the
right-hand side of ODE increases more than linearly, then the solution can blow up. Equation
ẋ = x2 is probably the best known example of such dynamics: for any positivex0 the solution
x(t) = x0/(1 − x0t) tends to∞ for t → t̃ = 1/x0, that is there is a blow up at̃t.

3Local stability means that for initial data near the steady state the solution remains near this
state fort > 0. If additionally all solutions from some neighbourhood of the steady state tends to
it for t → +∞, then this state is locally asymptotically stable.

4Global stability means that all solutions from some set havethe properties described above.
5Bifurcation means the qualitative change of solution dynamics with the change of some param-

eter of the model.
6Operatorf is locally Lipschitz if for any compact setU ⊂ C there exists suchL > 0 that

|f(φ) − f(ψ)| ≤ L|φ− ψ| for everyφ, ψ ∈ U .
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Notice that, iff(x(t), x(t−τ)) = f(x(t−τ)), that is the right-hand side depend only on the past
timet−τ , then the step method immediately yields global existence and uniqueness for continuous
functionsf7. Moreover, iff is non-negative, then any solution remains non-negative inthis case,
cf. [4] and the discussion on non-negativity presented there.

Example 1. Let us consider a scalar linear equation

(2.7) ẋ = ax(t) + bx(t− τ), a, b ∈ R, b 6= 0,

with initial functionϕ ∈ C for t ∈ [−τ, 0]. Then fort ∈ [0, τ ] we have

ẋ = ax(t) + bϕ(t− τ) =⇒ x(t) = ϕ(0)eat + beat
∫ t

0
e−asϕ(s− τ)ds

and we see that the solution exists, is unique and non-negative assumingb > 0 andϕ(0) ≥ 0.
Next, assuming thatxk : [(k − 1)τ, kτ ] → R

+ is the solution of Eq. (2.7) in[(k − 1)τ, kτ ] we
obtain

ẋ = ax(t) + bxk(t− τ) =⇒ x(t) = xk(kτ)ea(t−kτ) + beat
∫ t

kτ
e−asxk(s− τ)ds

for t ∈ [kτ, (k + 1)τ ]. The step method yields the existence and uniqueness of solution for all
t ≥ 0. Moreover, solutions are non-negative forb > 0 andϕ(0) ≥ 0.

2.1.2. Steady states and local stability for DDEs.Looking for steady states of Eqs. (2.2) we no-
tice, that a steady state is a solution that does not depend ontime, and thereforex(t) = x(t−τ) = x̄
for everyt. This means that any steady statex̄ satisfies the system of algebraic equations

(2.8) 0 = f(x̄, x̄).

Again similarly to local stability analysis for ODEs, we usethe linearisation method8. Let us recall
that for ODEs of the form (2.1), cf. e.g. [1], it can be proved that near a non-hyperbolic9 steady state
the phase-space portrait10 of the original system is topologically conjugated11 with the phase-space
portrait of the linear variational systeṁx = Df(x̄)(x− x̄). Analogously, instead of Eqs. (2.4) we
can study this linear system withDf(x̄) reflecting the Frechét derivative atx̄. However, in case
of DDEs the topological conjugation is not necessarily observed. On the other hand, we can still
study the linearised system instead the original one. Moreover, in case of Eqs. (2.2) calculating
the Frechét derivative we can treat the operatorf as a function of two variablesx(t) andx(t− τ).
Therefore, the linearised system reads

(2.9) ẏ =
∂f

∂x1

(x̄, x̄)y(t) +
∂f

∂x2

(x̄, x̄)y(t− τ),

7In fact,f needs to be only integrable in this case.
8Let us recall the geometrical interpretation of a derivative off : R → R which allows to under-

stand the notion of “linearisation”. The derivative off atx0 is equal to the directional coefficient of
a tangent to the graph off atx0. In small neighbourhood ofx0 the values off can be approximated
by the values of this linear functionx0 + f ′(x0)(x− x0).

9Steady statēx is hyperbolic if there exists an eigenvalue, that is a solution of the characteristic
equationdet (Df(x̄) − λI) = 0 with zero real part.

10Phase-space portrait reflects the dynamics of solutions in the vector field described byf in R
n.

11This means that orbits of one system can be continuously transformed into orbits of the other
one.
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wherey(t) = x(t) − x̄, ∂f

∂x1

is the derivative off(x(t), x(t− τ)) with respect tox(t), while ∂f

∂x2

is
the derivative with respectx(t− τ).

We look for non-trivial solutions of Eqs. (2.9) of the formy(t) = y0eλt. Therefore,

λy0e
λt = M1y0e

λt +M2y0e
λ(t−τ)

with M1 = ∂f

∂x1

(x̄, x̄),M2 = ∂f

∂x2

(x̄, x̄), and the characteristic equation reads

det
(

λI −M1 −M2e−λτ
)

= 0.

In general this characteristic equation has the form

(2.10) W (λ) = P (λ) +Q(λ)e−λτ = 0,

whereP andQ are polynomials anddegP = n > degQ. It should be noticed that Eq. (2.10) has
infinitely many zeros, that is the main problem in studying stability for DDEs. However, we do not
need to calculate all characteristic values but only check the existence of those with non-negative
real parts. If all eigenvalues have negative real parts, then x̄ is locally asymptotically stable, while
existence of at least one eigenvalue with positive real partyields instability.

For particular system and specific parameter values we can study local stability using different
stability criteria. There are several criteria based on thePrinciple of argument, like the Mikhailov,
Nyquist or integral criteria [55]. The Mikhailov criterionhas probably the most clear one. It was
proposed by Mikhailov for ODEs in [63], while the version forDDEs appeared in [45] and was
described in details and proved in [48]12. In [29] we clearly described the usage of this criterion for
several models, completed a small gap in the proof from [29] and extend the criterion for models
with integral delays. This criterion yields that in case of non-hyperbolic steady state all zeros
of Eq. (2.10) have negative real parts iff the change of argument ∆ argW (iω) = nπ/2 whenω
increases from 0 to+∞. It is easy to see thatargW (0) = 0 or argW (0) = π. Therefore, to obtain
stability the vector(ReW (iω),=W (iω)) must encircle the origin in the complex plane properly.

Example 2. Again consider Eq. (2.7) and assumeb > 0. It has unique (fora 6= −b) trivial steady
statex̄ = 0. Studying local stability we look for solutions of exponential form x(t) = x0eλt that
yields

λ = a + be−λτ ,

and hence the characteristic quasi-polynomial reads

W (λ) = λ− a− be−λτ .

For λ = iω, ω > 0, we haveW (iω) = iω − a − be−iωτ yieldingW (0) = −a − b. This means
that if −a − b > 0, thenargW (0) = 0, while if −a − b < 0, thenargW (0) = π (for a + b = 0
this argument is undefined and assumptions of the Mikhailov criterion are not satisfied). We study
the curve(<W (iω),=W (iω)) for ω increasing from0 to ∞. This shape depends ona and b,
obviously. We have

sin argW (iω) =
=W (iω)

|W (iω)| =
ω − b sin(ωτ)

|W (iω)| ,

cos argW (iω) =
<W (iω)

|W (iω)| =
−a− b cos(ωτ)

|W (iω)|
12The proof presented in [45] incomplete.
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with
|W (iω)| =

√

ω2 + a2 + b2 + 2b(a cos(ωτ) − ω sin(ωτ)).

Therefore,sin argW (iω) → 1 andcos argW (iω) → 0 implying argW (iω) → π/2 + 2lπ as
ω → +∞. This means that to obtain stability we requireW (0) > 0 and l = 0. Therefore, for
a+b > 0 the steady state is unstable and it can be stable fora+b < 0. Moreover,=W (iω) → +∞
and<(iω) oscillates between−a− b and−a+ b. Hence, ifa+ b < 0, thenargW (iω) > 0 for all
ω ≥ 0, and therefore∆ argW (iω) = π/2 and the trivial steady state is stable independently of the
delay. This means that if the term without delay dominates inthe right-hand side,|a| > b, and for
equation without delay term we have stability, then this stability is preserved in the equation with
delay for any arbitrary, even very large, delay. Notice, that for other values ofa andb we can get
the stability depending on the delayτ .

2.1.3. Hopf bifurcation and stability switches.In case of ODEs it is well known that if a steady
state loses stability, then a periodic orbit can appear as the result of Hopf bifurcation, cf. [61]. More
precisely, Hopf bifurcation is a qualitative change of the model dynamics such that the increase
of bifurcation parameter leads to a periodic solution appearance or disappearance. This periodic
solution is replaced by a steady state. The orbit of the periodic solution encircles the steady state
in the phase-space. Both steady state and periodic orbit canbe stable or unstable. The Hopf
bifurcation theorem gives sufficient condition for a periodic orbit appearance. Moreover, stability
of this orbit can be studied using the central manifold theorem.

Again similarly we can study Hopf bifurcation and arising periodic orbits for DDEs, cf. [22,49].
The necessary condition for Hopf bifurcation is a change of stability of the steady statēx for that
Hopf bifurcation is studied. This change of stability is related to the existence of an eigenvalue
with zero real part, because eigenvalues depend continuously on the model parameters. In case of
Eqs. (2.2) we can treat time delay as a bifurcation parameter. More precisely, changing the time
variablet → t/τ we obtain the model with delay equal to 1 and other model parameters rescaled
by τ , and therefore the delay is the model parameter as well. Continuous dependance implies that
if x̄ is asymptotically stable forτ = 0, that is all eigenvalues have negative real parts, then it is
stable for smallτ . Similarly, if it is unstable forτ = 0, that is there is an eigenvalue with positive
real part, then instability for smallτ > 0 is guaranteed. When there is an eigenvalue13 λ = iω,
ω ∈ R

+, then the change of stability can occur and the characteristic function (2.10) reads

W (iω) = P (iω) +Q(iω)e−iωτ ,

and therefore
W (iω) = 0 =⇒ |P (iω)| = |Q(iω)|.

Following the ideas presented in [18], cf. also [72], we define the auxiliary function

(2.11) F (y) = |P (i
√
y)|2 − |Q(i

√
y)|2, y = ω2,

and study zeros ofF . Under some assumptions, cf. [18], any positive zeroȳ of F defines the
eigenvalueiω̄, ω̄ =

√
ȳ and there is a corresponding sequence of delaysτn defined by Eq. (2.10)

for λ = iω̄, where the stability switch can occur. Moreover, the sign ofF ′(ȳ) determines this
stability switch. Clearly, if̄x is stable forτ = 0 andȳ is the only zero of the auxiliary functionF ,
thenF ′(ȳ) > 0 implies thatx̄ loses stability for the first critical delayτ0 and cannot gain it again
for larger delays. Other cases can be analysed similarly.

13In fact we have two conjugated eigenvalues±iω in this case.
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Now, we turn to the analysis of bifurcating periodic orbits.We use the approach proposed
in [22] basing on normalised bounded variation (NBV) functions.14 The reason of usage NBV
approach instead of standard one, cf. [49], is that for NBV weobtain formulae that are more
clear and slightly simpler to calculate than in standard approach. In this analysis we additionally
assume thatf is of classC3 andf(0) = 0 such that we study the trivial steady state of Eq. (2.4).
Moreover,f = f(xt, α), whereα is a bifurcation parameter. Because typically we are interested in
bifurcations with respect to the delay, therefore to avoid problems with the space, we rescale time
t → t/τ obtainingτ = 1 in new time variable. Let nowC denote the Banach space of continuous
functions defined on the interval[−1, 0] with the complex values (the real-valued functions can be
treated as the functions with zero imaginary part). The non-linear functionf can be expressed as

f(xt, α) = L(xt, α) +G(xt, α),

whereL is a linear continuous map onC andG is a non-linear part off , G 6= 0. According
to the Riesz representation theorem, the mapL has an unique representation in terms of NBV
functions and Riemann-Stjelties integral.15 Therefore, the exists an unique NBV functionζ such
thatL(φ) =

∫ 1
0 dζ(θ)φ(−θ) for everyφ ∈ C. This yields that NBV with the total variation norm is

a representation of the dual space ofC. Hence, we can also writeL(φ) =< ζ, φ >, where< ·, · >
reflects duality.

We study Hopf bifurcation and stability of periodic orbit arising when the trivial steady loses
stability, that is for some threshold valueα0 of the bifurcation parameter. LetT (t), t ≥ 0 be the
semi-group defined by the equationż = L(zt) andA denotes the generator of this semi-group.
Hopf bifurcation occurs forα0 if A hasiω0 as an eigenvalue. To find eigenvalues we study study
the characteristic function

∆(λ, α) = λ−
∫ 1

0
exp(−λθ)dζ(θ, α),

The generatorA hasiω0 as an eigenvalue, if there existsp ∈ C, p 6= 0, such that

∆(iω0, α0)p = 0,

and then the functionφ(θ) = exp(iω0θ)p is the eigenvector forA at the eigenvalueiω0. Letq ∈ C,
q 6= 0 satisfies

q∆(iω0, α0) = 0.

If A∗ is the adjoint operator, then it hasiω0 as its eigenvalue and the eigenvectorψ satisfies<
ψ, φ >= qD1∆(iω0, α0)p,whereD1∆(λ, α) is the derivative of∆ with respect to the first variable

14Let f : [a, b] be bounded andΠ : a = x0 < x1 < . . . < xl = b be a partition of the
interval [a, b]. DenoteV (Π, f) =

∑l
i=1 |f(xi) − f(tx−1)|. The numberV (f) = supΠ V (Π, f) =

supΠ

∑l
i=1 |f(xi) − f(tx−1)| is called the variation of the functionf on the interval[a, b].

Let ζ be a function of bounded variation defined on the interval[0, 1]. We call this function NBV
(normalised bounded variation) ifζ(0) = 0 andζ is continuous from the right-hand side on the
open interval(0, 1).

15 Let f , g : [a, b] → R be bounded. If there existsK > 0 such that∀ε > 0 ∃δ > 0 such
that for every partitionΠ : a = x0 < x1 < . . . < xl = b of the interval[a, b] with the diam-
eterδ(Π) < δ and every choice of the intermediate pointsξi ∈ [xi−1, xi], i = 1, . . . , l, there is
|∑l

i=1 f(ξi) (g(xi) − g(xi − 1)) −K| < ε, thenK is called the Riemann-Stieltjes integral off on
the interval[a, b] with respect tog.
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λ. Moreover, if±iω0 are simple eigenvalues, then< ψ, φ > can be normalised to 1. Then we
chooseq such that< ψ, φ > is normalised to 1 obtaining

qD1∆(iω0, α0)p = 1.

To study the type and stability of bifurcating periodic solution within the centre manifold, we
determine the third termµ2 in the Taylor expansion of this solution. Ifµ2 is positive, then the
bifurcation is called supercritical and periodic solutions exist forα > α0. If additionally the
steady state is stable forα < α0, then the bifurcating periodic solution is stable within the centre
manifold. Moreover, if no spectrum ofA is in the right half-plane, then the centre manifold is
attractive. Therefore, the periodic solution is asymptotically stable. Ifµ2 is negative, then the
bifurcation is called subcritical and periodic solutions exist for α < α0, and if as before the steady
state is stable forα < α0, then the periodic solution is unstable.

The third termµ2 can be calculated as

µ2 =
Rec

Re (qD2∆(iω0, α0)p)
,

wherep, q are chosen as above,D2 denotes the derivative with respect to the bifurcation parameter
α, and

c =
1

2
qD3

1G(0, α0)(φ, φ, φ̄) + qD2
1G(0, α0)

(

ψφ̄(·, 0), φ
)

+
1

2
qD2

1G(0, α0)
(

ψφ(·, 2iω0), φ̄
)

,

whereDi
1, i = 2, 3 denotes the derivative of theith order with respect to the first variablezt and

ψφ1
(θ, a) = exp(aθ)(∆(a, α0))−1D2

1G(0, α0)(φ, φ1).

Example 3. As before consider Eq. (2.7) withb > 0. We have|iω − a| = |be−iω|, and therefore
F (y) = y + a2 − b2. The auxiliary functionF has positive zeroy0 = −a2 + b2 iff a2 − b2 < 0
and thenF ′(y0) > 0. This means that stability switches can occur only whenb > |a| and only the
switch from stable to unstable steady state is possible. However, forτ = 0 the trivial steady state
is stable fora+ b < 0 and unstable fora + b > 0. Let us consider two cases:

• a > 0 implying a + b > 0, that is the trivial steady state is unstable forτ = 0 and remains
unstable for allτ > 0;

• a < 0, a 6= −b, implying
a + b > 0 and the trivial steady state is unstable for allτ ≥ 0 again;
a + b < 0 and there is a change of stability from stability to instability for τ = τc,

whereτc is the first delay satisfyingω + b sin(ωτc) = 0 anda+ b cos(ωτc) = 0.

In case of the linear equation Eq. (2.7) Hopf bifurcation cannot occur, obviously. The reader can
find examples of Hopf bifurcation analysis in Section 4.

2.1.4. Global stability and Lyapunov functionals.Studying global stability we usually apply the
method of Lyapunov functionals, cf. e.g. [2] in the context of ODEs and [53] in the context of
DDEs. Lyapunov functional is a smooth function defined on thespace of solutions having some
special properties. The Liapunov theory for ODEs implies that if L : Rn → R

n, L(x) ≥ 0 and
L(x) = 0 ⇐⇒ x = x̄, wherex̄ is the steady state under study,L is strictly decreasing along the
system trajectories, then̄x is globally stable. Slightly more strong conditions are required in case
of infinite dimensional dynamical systems like DDEs.
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In general, the most typical is Lyapunov-LaSalle theorem that can be used also in case of ODEs
e.g. whenf is not strictly decreasing. More precisely, in case of DDEs this theorem yields that if
the system has Lyapunov functional, then any solution is attracted byM that is an invariant subset
of the set{ϕ ∈ C : L′(ϕ) = 0}, whereL′ is the derivative of the Lyapunov functional along the
system trajectory.
Example 4. Coming back to Eq. (2.7) withb > 0, we study stability of the trivial steady state, and
hence we assumea < 0. We define a Lyapunov functional as

L(φ) = φ2(0) + C
∫ 0

−τ
φ2(s)ds, C > 0.

It is obvious that forφ ∈ C this functional satisfiesL(φ) = 0 iff φ = 0. Moreover,

L̇(x(t)) = (2a+ C)x2(t) + 2bx(t)x(t− τ) − Cx2(t− τ),

that isL̇(x(t)) is a quadratic form ofx(t) andx(t− τ). Now, we need to findC > 0 (if possible)
such that for chosena andb L̇ is negatively defined. Therefore, we need to study the matrix

(

−(2a+ C) −b
−b C

)

,

that is positively defined for2a + C < 0 and(2a + C)C + b2 < 0. Let us chooseC = |a|. Then
2a + |a| = a < 0 yielding a|a| + b2 = −a2 + b2 < 0 for |a| > b. We see thatL′(ϕ) = 0 for
everyϕ ∈ C such thatϕ(0) = ϕ(−τ) = 0. However, the only invariant subset ofC satisfying this
condition isM = {0}. Therefore, if the trivial steady state is stable independently on the delay,
then it is globally stable.

3. SIMPLE MODELS WITH DELAY IN APPLIED SCIENCES

In this section we present a short introduction to DDEs applied in biology and medicine in
general. The beginning of such applications is typically associated with the Hutchinson equation.
In 1948 G.E. Hutchinson proposed [52] the delayed version ofthe logistic equation.

3.1. Classic logistic equation with delay in population dynamics. In his article [52] Hutchin-
son applied the logistic equation in the description of oscillatory ecological systems. The Hutchin-
son equation was used in that context many times in the seventies and eighties of XX century.
Moreover, except linear equations, it is the most frequently used example of DDE properties,
cf. [46,49,55]. On the basis of this equation researchers tried to explain many experiments where
the oscillations appeared. The Hutchinson equation reads

(3.1)
dN

dt
(t) = rN(t)

(

1 − N(t− τ)

K

)

,

whereN(t) denotes the size of population in study in the present timet, the derivativedN
dt

(t)
describes the change of this size at timet,N(t− τ) is the size in some past timet− τ , τ > 0 is the
magnitude of delay and in population models it is typically related with the maturation time or the
length pregnancy period,r reflects fertility of the population and is typically calledthe (intrinsic)
birth or reproduction rate, whileK is the carrying capacity for the population.

Now, we present some specific examples of the application of Eq. (3.1), cf. [64]. May (1975)
used this equation to model oscillations in the size of population of Australian fly (Lucilla cuprina).
The experimental period of oscillations was 35–40 days. Maturation from a larva to a fly was taken



DELAYED EQUATIONS IN APPLICATIONS 11

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

700

FIGURE 2. Sample solutions of Eq. (3.1) withrτ = 2.1, τ = 9 (right) andK = 100
(left), K = 200 (right). In both graphs we observe the same quantitative dynam-
ics, however doubling of the carrying capacityK implies doubling of the solution
amplitude.

into account in the model. For parameters satisfyingrτ = 2.1 and the delayτ = 9 days the period
of solutions is equal to 40 days. The solution of Eq. (3.1) with parametersrτ = 2.1, τ = 9 and
K = 100 is presented in Fig. 2 (left). In reality, the maturation time is near 11 days, however
such fitting of that simple models seems to be satisfactory. Better fitting is possible for slightly
more complex model (Gurney et al. 1980). It should be noticedthat the oscillatory dynamics in
the model described by Eq. (3.1) does not depend on the magnitude of carrying capacity and this
effect is observed in experiments. Graphs presented in Fig.2 illustrated this feature: the right-hand
graph was prepared for the carrying capacity equal to twice carrying capacity comparing to the
left-hand graph. Solutions differ only quantitatively, while the qualitative description is the same
in both graphs.
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FIGURE 3. Solutions of the Hutchinson equation (3.1) withrτ = 2.1, K = 100
andτ = 1, 5, 12, 15, respectively.
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Using this simple model we explain the possible influence of time delay on the model dynamics.
Fig. 3 shows the solutions of Eq. (3.1) with the same parameters and increasing delay. For small
delays the dynamics is similar to the original logistic equation, that is solutions monotonically tend
to the carrying capacityK, cf. the left-hand top graph in Fig. 3. With increasing delayoscillations
appear. These oscillations are dumping at the beginning (right-hand top graph in Fig. 3), and
become un-dumping for larger delays, cf. bottom graphs in Fig. 2. Notice, that increasing delay
yields the increasing both the amplitude and period of oscillations. Hence, in this case the delay
has an destabilising effect, meaning that the steady state stable for small delays becomes unstable
for larger ones. For larger delays solutions oscillate around the steady state. More precisely, ifx(t)
is a periodic solution of Eq. (3.1), then

∫ x(T )

x(0)

dx

x
= r

∫ T

0

(

1 − x(s − τ)

K

)

ds =⇒ ln
x(T )

x(0)
= r

(

T −
∫ T

0

x(s− τ)

K
ds

)

,

whereT is the period of solution, and thereforex(0) = x(T ). We obtain

xmean=
1

T

∫ T

0
x(t)dt = K.

The same Hutchinson equation was used by May (1981) to describe the dynamics of lemming
population in the Churchil District in Canada. In this modelthe delay reflect a pregnancy period
(about0.72 year). Similarly Stritzaker (1975) modelled vole population in Scottish Mountains,
however he used more complex system with the predation effect included. Myers and Krebs (1974)
studied cycles for rodent populations that last typically 3, 4 years.

Another type of the delayed logistic equation was proposed by Schuster & Schuster [71] to
reflect the cancer cells dynamics, we describe it in the next section. Moreover, from mathemat-
ical point of view we can introduce the delay in several different ways, cf. [54], however from
biological point of view only specific models can be justified. We discuss that topic in the last
section.

Except the simple models based on the Huntchinson equation many other models was used in
population dynamics, the interested readers can refer to the text-books of Gopalsamy [46] and
Kuang [55], cf. also [20,75,78].

3.2. Simple models of red blood cell production. Many physiological disorders appear in asso-
ciation with periodic or oscillatory dynamics. Such dynamics can be caused by time delays in the
physiological process taken into account. Hence, DDEs are often used in modelling of different
diseases with oscillatory dynamics.

One of the most important processes for which the time delay is undoubtedly present and
causes oscillations is a red blood cell production. There isthe delay about 6 days between the
decrease in red blood cells number in blood and the release ofnew ones from bone marrow to
fill this loss. Probably the first model proposed in this context was constructed by Ważewska-
Czyżewska and Lasota in [77]. However, at the same time Mackey and Glass studied a similar
model, cf. [58, 59, 64]. It should be noticed that the delayedmodel proposed in [77] is a reduced
version of more complex model that has good biological justification. However, Mackey & Glass
model has become popular because chaotic dynamics is observed for some parameter values. Both
Ważewska-Czẏzewska & Lasota and Mackey & Glass equations describe changes of red blood
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cells number in circulating blood. Letc(t) denote the total number (density) of red blood cells in
blood at timet. Both models can be written in the following general form

(3.2)
dc

dt
(t) = −γc(t) + f(c(t− τ)),

whereγ reflects the mean death rate of red blood cells andf describes the release from bone
marrow. In case of Wȧzewska-Czẏzewska & Lasota modelfW L(x) = % exp(−γx) (whereγ
characterises excitability of a hematopoietic system, and% reflects an organism oxygen demand),
while Mackey and Glass chosefMG(x) = λ amx

am+xm with the Hill parameterm yielding the diversity
of the model dynamics.

One of the symptoms of leukemia is oscillatory behaviour of while blood cells. In [58] the reader
can find the comparison between clinical data for a patient with chronic leukemia and solutions of
Eq. (3.2) with the functionfMG. For this model the sequence of bifurcation leading to chaotic16

dynamics is observed. Fig. 4 presents solutions of this model with parametersγ = a = 1, λ = τ =
2 andm changing fromm = 7 tom = 19. With increasing bifurcation parameterm we observe
qualitative change of the model dynamics from simple sinus-type oscillations form = 7, through
more complex periodic solutions, to aperiodic solutions for m = 10, 11, and again to periodic
dynamics. Graphs in Fig. 4 reflect the dependance betweenc(t) at present timet andc(t − τ) at
previous timet−τ . Such type of graphs are sometimes called phase-portraits for DDEs. However,
it should be noticed that the real phase-space is infinite-dimensional in this case, and therefore
cannot be reflected graphically. For comparison in Fig. 5 we present graphs of solutionsc(t) as
functions of timet for m = 7 andm = 10. It should be emphasised that Eq. (3.2) withfW L

was used by M. Wȧzewska-Czẏzewska to propose a better treatment of patients with drug-induced
anemia, cf. [76]. She helped many patients using this method17.

Similarly, dynamics of CO2 density in blood vessels can be modelled. On that basis we cantry
to explain respiratory disorders in Cheyne-Stokes respiration. In this case the delay reflects the gap
between oxygenation of blood in lungs and getting the signalof this oxygenation by chemorecep-
tors in the brain stem.

3.3. Other models. DDEs are extensively used in epidemiological and immunological modelling.
Some results on immune system modelling are presented in thenext section. Introduction to
the description of the role of time delays in immune system modelling can be found e.g. in [21]
and [60].

Interesting combination of population dynamics, economicgrowth and epidemiological model
was proposed by Cooke and Yorke in [19]. Many interesting examples of delayed epidemiological
models can be found in [64], in particular models of HIV dynamics by Nelson are very interesting
and bringing some insight in the general knowledge about AIDS.

16There is no one accepted definition of chaos. Here, we use the notion of deterministic chaos
which is observed in case of deterministic models having both regular, periodic and irregular,
aperiodic solutions.

17The method is based on the model conclusions. The drug-induced anemia can be treated
maintaining a low level of red blood cells that cab be achieved by influencing the rate of maturation.
In order to decrease the speed of maturation of red blood cells a patient should breathe oxygen-
enriched air.
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FIGURE 4. Solutions of Eq. (3.2) in the space(c(t), c(t − τ)) with fMG and pa-
rametersγ = a = 1, λ = τ = 2 andm = 7, 7.5, 8, 10, 12 and19, respectively.
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FIGURE 5. Solutions of Eq. (3.2) with the functionfMG and parametersγ = a = 1,
λ = τ = 2 andm = 7 (left),m = 10 (right).

New interesting branch of dynamical systems applications is connected with interpersonal rela-
tionships and love affairs dynamics. Simple linear approach on the basis of ODEs system of equa-
tions was described by Rinaldi [69]. Probably the best knownare results of Gottman et al. [47]
popularised by Murray in his text-book [64], where the approach of discrete dynamical systems
to model the dynamics of marriage was used. In the context of human relationships DDEs was
used in [56]. Our study presented in [3] was focused on possible stability switches with increasing
delay18. It should be noticed that to obtain multiple stability switches we need to consider at least
two delays for single DDE equation or a system of two DDEs withone discrete delay, while for
one equation with one discrete delay only one stability switch is possible.

18Stability switch for some critical values of delay means thechange from stable steady state
to unstable one or vice versa. Typically in case of non-linear models it is associated with Hopf
bifurcation.



DELAYED EQUATIONS IN APPLICATIONS 15

Below we include one more example of linear system of two equations with more than one
stability switch, for more details cf. [3].

Let us consider

(3.3)

{

ẋ(t) = a11x(t− τ) + a12y(t),
ẏ(t) = a21x(t) + a22y(t).

The dynamics of Eqs. (3.3) depends on the coefficientsaij , obviously. We can prove that if
|a12a21| > |a11a22|, then multiple stability switches are possible. In Fig. 6 wesee examples of
such switches for the set of parameters[a11, a12, a21, a22] = [5,−4, 3,−1]. For τ = 0 and small
values of delays the origin is unstable, then the first changeof stability occurs forτ 1

th ≈ 0.522 at
which periodic solutions are present. Between(τ 1

th, τ
2
th), τ 2

th ≈ 0.722, the origin is stable, and after
the second switch it remains unstable for larger delays.
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FIGURE 6. Trajectories of Eqs. (3.3) in the space(x, y) around two stability
switches. For small delays we observe instability (left-top), then stability switch
(middle-top) to stability (right-top), again stability switch (left-bottom) to instabil-
ity (right-bottom).
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[9] M. Bodnar, U. Forýs, Influence of time delays on the Hahnfeldt et al. angiogenesismodel dynamics, Appl.
Math. (Warsaw), 36 (3), 251-262 (2009).
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