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ABSTRACT. A minimum connected dominating set (MCDS) can be used as virtual backbone in
ad-hoc wireless networks for efficient routing and broadcasting tasks. To find the MCDS is an NP-
complete problem even in unit disk graphs. Many suboptimal algorithms are reported in the literature
to find the MCDS using local information instead to use global network knowledge, achieving an
important reduction in complexity. Since a wireless network continuously changes due to, for ex-
ample, power restrictions, sensors faults, sensors disconnection etc., it is needed to adapt the MCDS
to the new network configuration. In this paper, we study the influence of removing a node on
the MCDS and we propose a localized reconfiguration algorithm to obtain the MCDS of the new
network topology.

1. INTRODUCTION

An ad-hoc wireless network is a decentralized type of wireless network characterized by a lack
of fixed communication infrastructure, so the selection of which nodes forward data is dynamically
making by considering the current network connectivity. Several researchers have proposed to use
of a virtual backbone in wireless ad-hoc networks as an alternative to the fixed routing infrastruc-
ture in classical wired networks [1, 2, 5, 7, 10]. The virtual backbone represents the “skeleton”
of the entire network and is used to frequency exchange routing information (traffic conditions,
neighbourhood information, etc.) and broadcast a message from one node to all the nodes in the
networks.

A Connected Dominating Set (CDS) is a subset of nodes such that:
• any two nodes are joined by a path in the network and
• any node in the network either belongs to the CDS (CDS node) or has a neighbour in the

CDS (non-CDS node).
The Minimum CDS (MCDS) is a natural candidate to be the virtual backbone infrastructure in
wireless ad-hoc networks because it guarantees the connectivity of the entire network using the
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minimum number of CDS nodes. To find the MCDS is an NP-complete problem for most graphs
and, in general, there exist several MCDS for the same network [3, 6].

Several researchers have proposed fast localized algorithms to find the CDS which running time
is constant or polylogarithmic in the network size (see, for instance [4, 7, 9, 12] and references
therein). To determine the best method to find the CDS is out of the scope of this paper, but we
note that the CDS obtained with some of the referenced methods is not minimum.

In this paper, we assume that the MCDS has been found considering the initial topology of
the wireless network. This MCDS can be not efficient when new nodes are activated or current
nodes are removed. To compute the MCDS each time a change is detected has a high cost even in
network with a reduced number of nodes. It is more efficient to incorporate mechanisms to repair
the virtual backbone with local information, although it is possible that the new CDS will be not
minimum. The particular case of removing CDS nodes has been considered in [9] but, up to our
knowledge, the effect of removing non-CDS nodes has not been considered yet.

In Section 2, we study the effect of deleting a node on the MCDS size. According to our
theory, the deletion of a node can give the following consequences: 1) the CDS increases by one
or more nodes; 2) the CDS decreases by one node; 3) the CDS size does not change; 4) the CDS
is disconnected. The deletion of CDS node can lead to any of these effects, but the non-CDS
nodes only can give the effects 2) or 3). In Section 3, we will propose a mechanism to repair the
virtual backbone in ad-hoc wireless networks using local information. Finally, Section 4 states
some concluding remarks.

2. GRAPH THEORY

We model the network as a Unit Disk Graph [3], defined by G = (V,E), where the nodes
(vertices) in V are points in the Euclidean plane. We assume that the maximum transmission range
is the same for all nodes in the network and it is scaled to one unit. There exists an edge uv ∈ E
if u and v are within the maximum transmission range of each other, i.e., the Euclidean distance is
dG(u, v) ≤ 1.

For instance, in Figure 1 we can see a network represented by the collection of 5 nodes and the
corresponding unit disk graph.
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FIGURE 1. A collection of nodes and the corresponding unit disk graph G

2.1. Basic Definitions. Let G = (V (G), E(G)) be a connected graph of order at least three. The
neighbourhood NG(v) of a vertex v ∈ V (G) is the set of all vertices adjacent to v, i.e NG(v) =
{u ∈ V : uv ∈ E(G)}. The degree of a vertex v is denoted by dG(v) = |NG(v)|. For example, for
the graph G from Figure 1, NG(A) = {B}, NG(C) = {B,E}, so dG(A) = 1, dG(C) = 2.

An induced subgraph ofG is a subset of the vertices of a graphG together with any edges whose
endpoints are both in this subset. A cycle graph is a graph that consists of a single cicle, i.e, some
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number of vertices connected in a closed chain. The cycle graph with n vertices is denoted by Cn.
Every vertex of a cycle graph Cn has degree two. A complete graph with n vertices, denoted by
Kn, is a graph in which every pair of distinct vertices is connected by a unique edge. A wheel
graph Wn is a graph with n ≥ 4 vertices formed by connecting a simple vertex to all vertices of
(n− 1)- cycle.

A subset D of V is dominating in G if every vertex of V −D has at least one neighbour in D.
A dominating set D is minimal dominating set in G if no proper subset S ′ ⊂ S is a dominating set
ofG. A subsetD of V is connected dominating ifD is dominating and the subgraphG[D] induced
by D is connected. Let γ(G) be the minimum cardinality among all dominating sets in G. The
minimum cardinality of a connected dominating set of G is a connected domination number of G
and is denoted by γc(G). A minimum connected dominating set of a graph G is called a γc-set of
G. This parameter was defined by Sampathkumar and Walikar in [11].

For X ⊆ V and x ∈ X, the set PNG(x,X) = NG[x] − NG[X − {x}] is called the private
neighbourhood of x. Note that x ∈ PNG[x,X] if and only if x is an isolated vertex in G[X] (the
subgraph induced by X in G). It is well-known ( [8]) that a dominating set X is minimal if and
only if PNG(x,X) 6= ∅ for any vertex x ∈ X.

2.2. Preliminary results. We will consider removing of a vertex v ∈ V from the graph G. If the
graph G− v is connected, we can classify the vertices according to the influence on the connected
domination number of G:

V 0(G) = V 0 = {v ∈ V : γc(G) = γc(G− v)};
V +(G) = V + = {v ∈ V : γc(G) < γc(G− v)};
V −(G) = V − = {v ∈ V : γc(G) > γc(G− v)}.

For the case where G− v is disconnected, we define

V r(G) = V r = {v ∈ V : G− v is disconnected}.
As a result, we have V = V 0 ∪ V + ∪ V − ∪ V r.

Observation 2.1. For a connected graph G we have:
(1) V r contains the set of all supports in G, i.e. S(G) ⊆ V r.
(2) If V − 6= ∅, then γc(G) ≥ 2. In fact, when γc(G) = 1, the number γc(G) can not decrease

and V = V 0 ∪ V + ∪ V r.

Example 2.2.
(1) If G is a cycle G = Cn with n ≥ 4, then V = V − (for n = 3 is C3 = K3 and γc(C3) = 1).
(2) Let G be a wheel Wn with n ≥ 4 vertices. Since G contains a vertex of degree n − 1,

γc(G) = 1. If we remove the vertex v of degree n− 1 from G, then G− v is a cycle Cn−1
and γc(Cn−1) = n − 3. In this case, removing a vertex v, for n > 4 increases the number
γc and v ∈ V +.

(3) For a complete graph Kn with n ≥ 2, we have V = V 0.

Lemma 2.3. Let D be an MCDS of G and w ∈ D. Then the following statements hold:
(1) dG(w) ≥ 2
(2) if a subgraph G[D − {w}] induced by the set D − {w} is connected, then w has at least

one private neighbour v ∈ V −D.
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Proof.
(1) If dG(w) < 2, then w is an end-vertex. It is easy to observe that any minimum connected

dominating set contains no end-vertex. Hence w 6∈ D, a contradiction. We conclude
dG(w) ≥ 2.

(2) If w has no private neighbour in V − D, then D − {w} is a dominating set of G. By
hypothesis, G[D − {w}] is connected. This leads to the contradiction with the minimality
of D.

�

The above lemma allows to establish the following conditions to the vertices in V +.

Proposition 2.4.
(1) If w ∈ V +, then w belongs to any minimum connected dominating set of G.
(2) Let D be an MCDS of G and w ∈ V +. If G[D−{w}] is connected, then w has at least two

private neighbours in V −D.
Proof.

(1) Let D be a minimum connected dominating set of G and w /∈ D. We have D ⊂ V (G−w)
and D is a connected dominating set in G− w. We get γc(G− w) ≤ |D| = γc(G), which
is a contradiction with the fact that w ∈ V +. Thus, we conclude that w ∈ D.

(2) By 1. above, w ∈ D. By Lemma 2.3, w has at least one private neighbour in V −D.
Suppose that w has exactly one private neighbour x, then x is the only vertex which is

not dominated inG−w. SinceG−w is connected, dG−w(x) ≥ 1. Thus x has a neighbour y
in V −D. SinceD is a dominating set ofG, y has a neighbour inD. Thus (D−{w})∪{y}
is a connected dominating set of G − w and γc(G − w) ≤ |D| = γc(G), a contradiction.
As a consequence, w has at least two privative neighbours in V −D.

�

Observation 2.5. Let D be an MCDS in a graph G.
(1) If w ∈ D has exactly one neighbour in D, then G[D − {w}] is connected.
(2) A node belonging to any MCDS does not have to be in V +.

The reverse of Proposition 2.4.1. is not necessary true. For instance, Figure 2 shows the
graph G with labeled vertex v. It is easy to observe that every MCDS of G contains v, but
γc(G) = γc(G− v) = 5, so v /∈ V +.
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FIGURE 2. Graphs G and G− v
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2.3. Theory to CDS Reconfiguration. Using the graph theory presented above, we will study
the case where a vertex v is deleted from the graph. First, we note that for v ∈ V + the difference
γc(G−v)−γc(G) can be arbitrarily large (see, for instance, a wheel from Example 2.2). However,
if v ∈ V −, then it is possible to find a bound for the difference γc(G)− γc(G− v).
Theorem 2.6. Let G be a graph with n ≥ 3. If v ∈ V and G− v is connected, then

v ∈ V − if and only if γc(G)− γc(G− v) = 1.
Proof. First, we prove that if v ∈ V −, thenDv∩NG(v) = ∅ for every γc− setDv ofG−v. In fact, if
NG(v)∩Dv 6= ∅, thenDv is also dominating and connected set inG. It implies γc(G) ≤ γc(G−v),
a contradiction with v ∈ V −.

Now, take v ∈ V −. So γc(G) − γc(G − v) > 0. Let Dv be a γc-set of G − v. We know that
NG(v) ∩Dv = ∅. Since every vertex of NG(v) has a neighbour in Dv, we obtain that Dv ∪ {w} is
a connected dominating set in G, where w ∈ NG(v). Hence γc(G) ≤ γc(G− v) + 1. Finally, from
both inequalities we have γc(G)− γc(G− v) = 1.

The converse is obvious. �

Theorem 2.7. Let D be an MCDS of G and v ∈ V −D. If w ∈ D is a neighbour of v such that it
has no private neighbour in V − (D ∪ {v}) and G[D − {w}] is connected, then:

(1) D − {w} is an MCDS of G− v and v ∈ V −;
(2) v /∈ D and it is the only private neighbour of w in V −D;
(3) w /∈ V +.

Proof.
(1) First note that D−{w} is a dominating set of G− v. In fact, we take x ∈ G− v. If x /∈ D,

then there is z ∈ D, z 6= w such that z is a neighbour of x since w has no private neighbour
in V − (D ∪ {v}) and D is an MCDS of G. Moreover, by hypothesis, G[D − {w}] is
connected, so it is an MCDS of G − v. Consequently, γc(G − v) ≤ |D − {w}| < γc(G)
and we get v ∈ V −.

(2) By Lemma 2.3, we know thatw has some private neighbour in V −D and by the hypothesis
w has no private neighbour in V −(D∪{v}), then we conclude that v must belong to V −D
and it is the only private neighbour of w.

(3) If w ∈ V +, then by Proposition 2.4, w has at least two privative neighbours in V −D. This
contradicts statement 2 above.

�

Lemma 2.8. If v ∈ V −, then there exists a minimum connected dominating setD such that v /∈ D.

Proof. Let v ∈ V −; then we have γc(G − v) < γc(G), for any minimum connected dominating
set Dv of G − v. As a consequence, v is not dominated by Dv. Of course, v /∈ Dv. Since G is
connected, NG(v) 6= ∅; let x ∈ NG(v);x /∈ Dv. Since v is the only vertex not dominated by Dv in
G, D = Dv ∪ {x} is a minimum connected dominating set of G such that v /∈ D. �

3. ALGORITHM FOR NETWORK RECONFIGURATION

We propose a method to reconfigure the MCDS when a non-MCDS node in the network is
removed. The reconfiguration algorithm includes two phases: testing and MCDS updating. Propo-
sition 2.4 guarantees that non-MCDS nodes are not in V + and, as a consequence, the reconfigured



6 A. DAPENA, M. DETTLAFF, M. LEMAŃSKA AND M.J SOUTO-SALORIO

MCDS will contain the same or less nodes than the original MCDS, but the size never can grow. In
addition, Theorem 2.6 guarantees that, when a node in V − is removed, MCDS size will be reduced
by one node.

We assume that an MCDS has been obtained considering the initial network topology. Nodes
in the network are identified by its identification numbers, ID. Each node in the MCDS has two
configuration tables with information of its neighbours: the ”MCDS table” with the identification
number, ID, of neighbours in the MCDS and the ”private nodes table” formed by the IDs of the
neighbours not connected to other MCDS nodes. Notice that if D is MCDS having at least two
vertices and v ∈ D, then every private neighbour of v with respect to D belongs to V −D.

Testing phase. The testing phase allows to detect removing of the non-MCDS nodes:

Step 1:: The node in the MCDS, denoted by w0, periodically send a REQUEST message to
its 1-hop neighbours.

Step 2:: When a neighbour receives a REQUEST message, it sends a RESPONSE message.
Step 3:: If w0 does not received the RESPONSE message of the neighbour v, the node w0

checks the ID of v in the private nodes table:
Step 3.1:: If the ID of v appears in the private nodes table, this ID is removed.
Step 3.2:: If the updated private nodes table is empty, w0 begins the MCDS updating

phase.

Note that the private nodes table of w0 after removing the node v is empty when v is the only
private neighbour of w0. This situation corresponds to the second consequence of Theorem 2.7.
This theorem guarantees that v is a node in V − and, as a consequence, the MCDS must be updated.

MCDS updating phase. This phase is done when the result of the testing phase indicates that the
deleted node belongs to V − and, from Theorem 2.6, we know that the size of the MCDS will be
less by one than the original size. In this phase, it is needed to guarantee that the new dominating
set is connected, which implies to study if there exists a path between all the neighbours of w0 (in
the dominating set). This task can produce a high overhead in computational cost and messages
interchange. For this reason, our algorithm only studies direct paths when w0 has two neighbours
(in the dominating set).

The algorithm is the following:

Step 1:: The MCDS node w0 looks for the "MCDS nodes table":
Case 1:: If the table has only one node, it means that the node w0 must be eliminated

from the MCDS. Go to Step 2.
Case 2:: If the table has two nodes, it is needed to study if there exists a direct connection

between the MCDS neighbours of w0:
Step 2.1:: The node w0 sends the ASK message with the ID in the "MCDS nodes

table" to the other node in this table.
Step 2.2:: The neighbour looks for this ID in its "MCDS nodes table" and answer

YES or NO.
Step 2.3:: If the node w0 receives the answer YES, it determines that the MCDS

must be updated and it goes to Step 2. In other case, there is no change in the
MCDS.

Case 3:: If the table contains more than two nodes, the MCDS is not updated.
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Step 2:: The node w0 sends an UPDATE-MCDS indidicating that the ID of w0 must be elim-
inated from the "MCDS nodes table". Also, if the “MCDS table” of w0 has only one ID,
w0 sends an UPDATE-PRIVATE message to this ID indicating that the ID of w0 must be
included in "private nodes table".
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FIGURE 3. Example: Connection between nodes and MCDS

Example 3.1. We will consider the unit disk network in Figure 1 formed by 12 nodes. The con-
nections between the nodes determined by the target regions are presented in Figure 3. There are
several MCDS formed by 5 nodes. In particular, we have selected the MCDS formed by nodes
{2, 3, 6, 8, 10}. Each MCDS node has a private nodes table and a MCDS nodes table.

We will explain the effect of disconnecting some non-MCDS nodes on the MCDS.
Disconnection of node 1 in the network of Figure 3. In the testing phase, node 2 detects that

node 1 has been disconnected and, since the private nodes table is empty after removing the ID
of node 1, the MCDS updating phase is done. The ”MCDS table” of node 2 has only one node
and, using Case 1, node 2 is eliminated from the MCDS. As a result, the new MCDS is formed by
{3, 6, 8, 10}. Also, the ID of node 2 is included in the "private node table" of node 3 (see figure 4).

Disconnection of node 4 in the network of Figure 3. In the testing phase, node 3 detects that
node 4 has been disconnected and removes its ID of the "private nodes table". Since the "private
nodes table" of node 3 is empty, the update MCDS phase is performed. In this phase, from case 2,
node 3 detects that there are not a direct connection between node 2 and 6, and the MCDS is not
updated. Figure 5 shows the reconfigured network.

Disconnection of node 9 in the network of Figure 3. In the testing phase, node 8 detects that
node 9 has been deleted and removes the ID from "private nodes table". Since the "private nodes
table" is empty, the update MCDS phase is performed. In this phase, from case 2, node 8 detects
that there exists a direct connection between node 6 and 10, and the MCDS is updated by removing
node 8 from the "MCDS nodes table". The new MCDS is {2,3,6,10} (see figure 6).
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sensor 8

private nodes

9

CDS nodes

6  10

sensor 6

private nodes

CDS nodes

3  8  10

sensor 10

private nodes

12

CDS nodes

6  8

sensor 3

private nodes

2  4

CDS nodes

69

7

11

5

4

12

8

6

10

3

[ ]

2

FIGURE 4. Example: Network after deleting of node 1
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FIGURE 6. Example: Network after deleting of node 9

4. CONCLUSIONS

We presented a graph theory to study the effect of deleting a vertex from a connected graph
on the MCDS size. The proposed theory allows to affirm that deleting a non-MCDS node never
increases the MCDS size. This result is used to propose an algorithm to reconfigure the backbone
of an ad-hoc wireless network using local information, which has a very overhead in computational
load and message interchange.
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