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FINITE-TIME LYAPUNOV EXPONENTS IN MODELS OF POPULATION DYNAMICS
KATARZYNA BUSZKO AND KRZYSZTOF STEFANSKI

ABSTRACT. Inthis paperwe show how one can adapt Lapunov exponergsidying chaotic tran-
sient behavior in nonlinear maps. We characterize this gimemon introducing average finite-time
Lyapunov exponents. As examples for testing the method keerteodels of population dynamics
that can generate both asymptotic chaos and transient sfsdes periodic windows.

1. INTRODUCTION

Lyapunov exponents (LEs) belong to the best known instrusnesed to investigate nonlinear
dynamical systems. Majority of literature on such systesrfecused mainly on their asymptotic
behavior that, depending on values of control parametarsbe either chaotic or periodic (in gen-
eral —regular). According to definition of LEs, the largeastthe case of discrete-time systems) or
the largest nonvanishing of them (in the case of continues-$ystems) tells about the asymptotic
behavior of the analyzed dynamical system.

In models of biological or medical systems special attenigooften payed to asymptotically
periodic behavior. It is well known, however, that such adetr, in the case of systems from
periodic windows in bifurcation diagram, is preceded byatlatransient behavior. Transient
chaos, although less exploited than its asymptotic copaterwas discussed in quite few publica-
tions (cf. [1-3]). In this paper we show, that after some rficgiions it is possible to adapt LEs
for description of such behavior. Referring to definitionLdf, we introduce the notion of aver-
age finite-time Lyapunov Exponents (AFTLE) and use it to deted estimate chaotic transient
behavior inside periodic windows.

The paper is arranged as follows: in Section 1 definition oid Briefly recalled and definition
of the average finite-time Lyapunov exponents (AFTLE) isddticed. In Section 2 numerical
estimates of AFTLE for the family of 1-dimensional logistitodel of population dynamics are
presented and discussed. In Section 3 similar estimatelddamily of 2-dimensional coupled
logistic maps are discussed.
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2. LYAPUNOV EXPONENTS

Lyapunov exponents characterize the average rate of gahinfinitesimal initial perturbations
of a state of a system. To recall definition of Lyapunov expasidor dynamical systems with
discrete time, let us consider the systek ) given by

(2.1) w(n,z) = f*(z) for n=0,1,...,

whereX C R?andf : X — X is a smooth function. 1fX is 1-dimensional one obtains only
one LE expressed by the formula (see, e.g., [8]):

1 n—1

(2.2) A(wo) = lim ~ 3" In|f'(z,)|, where o, = f*(xo).

s=0
In the case of 2-dimensional, whenf = (f1, f2), there appear two Lyapunov exponents defined
as:

.1 .
(2.3) Ai(zo) = nh_)rgog In|[x:(n)]] i=1,2,

wherey;(n) are eigenvalues of the matrix obtained by multiplying Jémolmatrices obtained in
each ofn iterations. Although LE formally depends on the initialtsta,, in practice it does not
since it follows from the Multiplicative Ergodic Theoremd], that \; for fixed i and for almost
everyz, € X (with respect to the ergodic measurehas constant value.

It follows from the definition of LE that a systems is chaotien it has at least one positive
Lyapunov exponent and generates trajectories confinedeimgscompact subset &f. In the case
of a discrete-time system negative signs of all LEs indieatattracting periodic orbit. In practice
estimates of LEs for discrete-time systems can be obtainexrically by implementing Formulae
(2.2) or (2.3). LEs are defined for— oo, which means, that they are useful solely in the case
of description of the asymptotic behavior of dynamical eyss. In reality, however, one cannot
observe infinitely long time series and quite often only $iant behavior can be noticed. On the
other hand, such kind of behaviors like chaotic transiebsgoved in dynamical systems disappear
whent —; oo. To be able to detect them, we introduce AFTAE referring to the definition (2.2).

At first we define finite-time estimate of Lyapunov exponerfl(E) for 1-dimensional maps

2.4) M(zo) =+ 3 Inl ()
=0

Values of\,,(zg) depend strongly on the initial conditian, therefore we introduce average finite-
time Lyapunov exponent,:

_ Z}'le )‘N(Sj)

m

>

(2.5)

wheres; = x((j) is the initial point of thejth of .J trajectories over which the FTLEs are averaged
in the formula (2.5). It is clear that the estimate may depemdhe distribution of initial points

s; but, contrary to the case of FTLE, where even a slight chahgg oan result in an essential
change of FTLE's value, a slight change of distribution afi@h points would change value of
AFTLE only marginally.



FINITE-TIME LYAPUNOV EXPONENTS IN MODELS OF POPULATION DYMMICS 3

In the case of 1-dimensional chaotic map apart from the AFDhE can easily define density
based LE (DBLE):

(2.6) No= [ ol £/ (@)lo(e)de,

wherep is a distribution density of initial points. It is obviousahthe estimate depends on the
densityp although weekly (in the same sense, the AFTLE does). Inquéati one should expect
that if p is the density of invariant measure DBLE coincides with LE\.

3. AVERAGE FINITE-TIME LYAPUNOV EXPONENTS IN ONEDIMENSIONAL MODEL OF
POPULATION DYNAMICS

The best known and very simple dynamical system that carrgenehaotic evolution is defined
by noninvertible logistic map that can describe evolutibamisolated, homogenous population.
The logistic model of population growth is given by the folaiu

(31) Tn+1 = f(xmr) = Txn(l - IL’n),
wherezx,,, z,.1 € [0,1],n € Nandr € [0, 4] is control parameter of the family of logistic maps.
The model describes seasonal reproduction of a speciewiduals of the species live in an
isolated habitat and do not interact with other populati®f@ameter denotes the average number
of offsprings per specimen. In this model fertility’s retioa connected with competition for food
is taken into account by nonlinearity [4—6]. Character ohayics of the population depends
on a particular value of the control parameteffor some values of one can observe chaotic
evolution while for others the asymptotic dynamics can béplec. In Fig.1a bifurcation diagram
of the family of logistic maps is shown. An ideal bifurcatidimgram would be a plot of sets
of accumulation points of typical trajectories versus tl@tol parameter thus representing
asymptotic properties of the family of maps. An approximatto such an ideal is created by
plotting points of trajectories with omission of their iiait sections. The diagram from Fig. la
shows properties of logistic maps forc [1,4]. In Fig. 1b LE for the same family is plotted
for the same range of. As one can see, chaotic behavior corresponds to positivevaf LE
while negative values of LE appear for such values fair which logistic maps generate attracting
periodic orbits, including those inside periodic windowsirg the bifurcation diagram.
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FIGURE 1. The family of logistic maps for € [1,4]: a) bifurcation diagram, b)
diagram of LE

We are interested in the evolution of the system inside periwindows, where the asymptotic
evolution of trajectories is periodic but their initial $®ns (sometimes quite long) typically exhibit
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chaotic features. It means, that asymptotically-peribaicavior is preceded by transient chaotic
behavior. It can be illustrated by a slight modification of fhrocedure of generating bifurcation
diagram, by plotting also initial sections of trajectorida Fig. 2a such a modified bifurcation
diagram forr € [3.9901, 3.9905] andn = 100 initial points is shown. One observes features of
chaotic evolution for the whole range of In Fig. 2b such a 'bifurcation diagram’ for the same
range ofr andn = 1000 initial points is shown. In this case a periodic window vaguamerges.

It can be exposed more explicatively by creating a standéudcltion diagram. Such a diagram is
shown in Fig. 2c. Itis created of the final 200 points of sewiof trajectories: = 10000 iterates
long. Now the window of period 5, vaguely visible in Fig. 2bjaronounced.
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FIGURE 2. Bifurcation diagram of the family of logistic maps far €
[3.9901, 3.9905] plotted for a) 100 initial iterates, b) 1000 initial iterate) 200
final of 10000 iterates

To illustrate transient chaos we plotted two typical timdesegenerated by the logistic map
(3.1) forr = 3.9903 with initial points: z¢(1) = 0.2 andz((2) = 0.89. In both cases the initial
evolution of trajectories exhibits chaotic features bt¢ai ~ 100 (Fig.3a) in the case of the first
trajectory and aften ~ 300 (Fig.3b) in the case of the second one the evolution becorrasdic.

LEs computed with (2.2) for the mentioned initial points:axéry(1)) = —0.0499 andA(zo(2)) =
—0.0499, which is consistent with the statement on independencéaiflthe initial state. These
values of LE confirm, that for the analyzed valuerdhe asymptotic behavior is periodic. Com-
putations fom = 100 give values of FTLES\;o(z0(1)) = 0.179952, and\;g(z0(2)) = 0.079998
which indicates chaotic evolution, and shows strong depecel of FTLE on the initial state. The
analyzed chaotic behavior has finite duration but for sufity small number of iterations it is
impossible to distinguish such transient chaotic behafrimm the asymptotically chaotic one.
We name chaotic transient behavior rambling’ and, consatjy, its duration is called 'rambling
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FIGURE 3. Time series generated by the logistic mapsfor 3.9903 inside the
window (5, 3) for n = 500 iterates from the initial points: &) = (1) = 0.2
b)82 = $0(2) =0.89

time’. For a single trajectory the rambling time is the numbkpoints, that do not approach to
the periodic attractod. The formal definition of the rambling time is based on the@umding
area of the periodic attractot within which any trajectory uniformly converges to the attor.
The number of trajectory points outside the area is the ramghime. In our previous papers two
methods of determining rambling time, the black intervattmod and the distance method [2, 3]
were presented.

Now we will show that the introduced AFTLE (2.5) charactes4ransient chaos correctly.

The first problem to be solved, however, consists in checkioy much values of AFTLE
computed according to Eg. (2.5) depend on the distributfanital points. One can compute
AFTLE with initial points s; uniformly distributed on the interval, 1]. Another natural choice
would be the distribution according to the invariant dgngitv outside periodic windows and
according to the quasi-invariant densiti"” inside a window. The invariant measure dengity
is a fixed point of the Frobenius-Peron equation [2]:

32 pra(a) = Foula) = [ 6l = £w)lonlv)dy

The invariant density in the case of asymptotically chaetiolution is absolutely continuous,
while in the case of asymptotically periodic evolution iaislistribution. Unfortunately, in major-
ity of even quite simple cases, except for the case of inmadsstribution for a system generating
periodic attractor, neither subsequent iteratesf the Frobenius-Peron equation nor its absolutely
continuous fixed poiny™ can be found in analytical form. Therefore, to learn aboairtehape
one is forced to construct their approximation using hisdatgs. We have constructed such his-
tograms, dividing the intervd0, 1] into L equal subintervalg,. The height of théth column of
the histogram approximating density is given byLj;/J wherej; denotes number of points of
any of J trajectories that fall into the subintervalin the nth iteration. Such histograms for the
windows (5, 1) and(5, 3), obtained from the uniform initial distribution after = 20 iterates are
shown in Fig. 4. As is visible, the distribution of the poitgsnot uniform and asymptotically
it would consist of 5 columns. As comprehensive studies Isasvn, for intermediate number
of iterations three components: the ephemefi€, the quasi-invarianp®™ and the asymptotic
p*P can be distinguished in the densjiy[2]. The ephemeric componept*® vanishes rapidly,
the quasi-invariant componept™ decreases geometrically with keeping its shape practically
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unchanged, and the asymptotic componéiitincreases witlh and has 5 accumulation points in
the form of linear combinations of 5 Dirac deltas.
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FIGURE 4. Histograms for distribution of points for a set of traas for: a)
r = 3.74 inside the window(5, 1), b) » = 3.99029 inside the window(5, 3).

In our numerical tests AFTLE (2.5) have been computed fdrainpoints s; distributed uni-
formly on the[0, 1] interval and according to the histograms obtained after 107 iterations
for J = 10? trajectories with initial states distributed uniformly éme [0, 1] interval. We also
computed DBLEs according to Eqg. (2.6) for the uniform dgneit the [0,1] interval and for the
histogram approximating™ outside a window ang“™ inside it. Numerical values of all four
parameters for three values of the control parametezar the window (5,3) and for three values
inside it are presented in Fig 5. Values of LE (2.6) are alsmshfor comparison.

One can notice that values of DBLE (2.6) for the uniform dnbkas practically the same
magnitude for all tested values ofboth outside and inside the window. Values of DBLE for the
histograms approximating™ or p%"v are slightly larger and practically coincide with values of
LE, AFTLE while outside the window, and inside the windowytree slightly smaller than the
values of DBLE for uniform density but remain positive. O thther hand, values of LE and of
AFTLE both for uniform and quasi-invariant distributionioftial points are almost identical also
inside the window. Although witlh, = 10* values of AFTLE for the uniform and quasi-invariant
distribution barely differ, the latter one gives a bit bepproximation to LE.

In Fig. 6 one can see plots of AFTLE, versusr for all three windows of period 5 and for
various numbers of iterations. Fig. 6a shows the AFTLES) o, A3, and\y, for the window
(5,1), which is the widest window of period 5. As is clear, negatigfies of AFTLE appear only
for n = 40 iterations for values of control parameteclose tor.; for which the superstable cycle
occurs. In Fig. 6b the AFTLES\s5, A5, and ;g for the window (5,2) are plotted. In this case
only X\ has negative values for valuesof~ 7. It means that fon ~ 100 andr close to
rest Chaotic transient behavior is statistically over althosgime rambling trajectories may still
remain. In Fig. 6c¢ similar plots of, for the window(5, 3), which is the narrowest window of
period5, and forn = 100, n = 300, n = 500 are shown. In this case onlyy, has negative values.

The above results suggest a connection between the rantistiegl/,;,(r.:) and the value of
n = nne fOr wWhich negative values ofng appear in periodic window for the first time. We
have determined the rambling tindé,,, (r,) [2, 3] and values ofi,., for all periodic windows of
periods from 3 to 8. The results are shown in Table 1.
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FIGURE 5. Values of Lyapunov exponents in the vicinity (3 pointsnfirthe left)
and inside (3 points from the right) the windd®, 1): LE (2.1)—+, AFTLE (2.5)
with uniformly distributed initial points on the interva, 1] — x, AFLTE (2.5)
with initial points distributed according to the measpure4,. . . with uniformly dis-
tributed initial points on the interva0, 1]-J,. . . (2.6) with initial points uniformly
distributed on the intervdD, 1],. .. (2.6) with initial points distributed according to
the measure-m.

Apparentlyn,., is a measure of duration of transient chaos and its valuegrsimorable 1 agree
with the rule revealed in our earlier papers that in the césbeofamily of logistic maps the nar-
rower the window, the longer the transient chaos duratioB][2/alues of the ratid/ 1, (7sst) /neg
that vary from0.5 to 3.0 shown in Table 1, however, force one to admit that, is a less precise
measure of duration of transient chaos than rambling tithg. Nevertheless it is clear that the
pace at which AFTLE inside a periodic windows decreasesasety connected with rambling
time for maps inside it. A model describing this process gtetively is presented in [11].

4. AVERAGE FINITE-TIME LYAPUNOV EXPONENTS IN2-D MODEL OF POPULATION
DYNAMICS

Such investigations can be extended onto the 2-dimensiogistic model of population dy-
namics, given by the formula:

Tp41 = dxnrx(]- - xn) + (1 - d)ynry(]- - yn)7
(41) Yn+1 = (1 - d>xnrm<1 - xn) + dynry(l - yn)7

wherez,, Tp11, Yn, Ynt1 € [0,1], n is natural numbery,,r, > 0 andd € [0,1]. The model
describes two colonies of a species, that interact by muatigration. The migration of individuals
may change population dynamics in both colonies. Paraseteandr, represent growth rates
in the colonies and the isolation parameterepresents coupling between their dynamics. The
coupling is strongest fo = 0 while for d = 1 the colonies do not interact. The simplest,
symmetric case, = r, was discussed previously [4]. In Fig. 7a bifurcation diagraith respect
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FIGURE 6. Plots of AFTLE), inside period 5 windows: &), 1) — from the top
to the bottom — fom = 10, n = 30, n = 40, b) (5,2) for n = 25, n = 50, and
n = 100, ¢) (5, 3) for n = 100, n = 300, andn = 500

to d is plotted forr, = r, = 4. Our attention is focused on the two periodic windows visiblthe
diagram. In Fig. 7b values of AFTLE, Mo, As0, Aigo, andag are plotted.

Outside periodic windows, as expected, values of AFT,Edo not depend on. Inside the
periodic windows they decrease with and become negative only far = 200. Forn < 200
transient chaotic behavior prevails.

1
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FIGURE 7. a) Bifurcation diagram of the family (4.1) fof, = r, = 4.0,d € [0, 1],
b) Values of AFTLE),: from the top to the bottom — for = 20, n = 40, n = 50,
n = 100, andn = 200

An interesting phenomena can be observed after breakinmsymy between the colonies,(#
r,). This can be seen in Fig. 8a where bifurcation diagram-fo« 3.5, r, = 4, andd € [0, 1] is
shown. Two wide periodic windows of periddare visible in the diagram: one fare [0.2,0.3]
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TABLE 1. Values of rambling timé1,;,(rs;) andn,., for windows of periods = 3,...,8

window's number 7., Nneg My Myb/Nneg
(3,2) 3.831874 15 25 1.6
(4,2) 3.960270 56 118 2.1
(5,1) 3.738915 32 53 1.6
(5,2) 3.905706 58 119 2.05
(5,3) 3.990267 169 469 2.77
(6,1) 3.627557 29 45 1.55
(6,2) 3.937536 162 375 2.3
(6,3) 3.977766 283 616 2.17
(6,4) 3.997583 1106 2089 1.8
(7,1) 3.701769 71 147 2.0
(7,2) 3.774214 77 180 2.3
(7,3) 3.886046 146 349 2.3
(7,4) 3.922193 198 585 2.95
(7,5) 3.951032 341 680 1.99
(7,6) 3.968977 343 726 2.1
(7,7) 3.984747 685 1307 1.9
(7,8) 3.994538 1183 2131 1.8
(7,9) 3.999397 4348 6155 1.41
(8,1) 3.662192 90 221 2.45
(8,2) 3.800771 183 311 1.6
(8,3) 3.870541 262 448 1.7
(8,4) 3.899469 384 531 1.3
(8,5) 3.912047 381 597 1.5
(8,6) 3.930473 886 1173 1.32
(8,7) 3.944213 1012 1334 1.3
(8,8) 3.973724 1816 2044 1.12
(8,9) 3.9814099 2619 2334 0.8
(8,10) 3.987745 2935 3359 1.14
(8,11) 3.992519 4408 4725 1.07
(8,12) 3.996219 4948 6162 1.24
(8,13) 3.998642 12978 10854 1.19
(8,14) 3.999849 61713 30649 0.49

and the second fof € [032, 04] We have estimated the AFTLE§.30, X50, Xloo, XQOO, X500,
and )\, inside these windows, using formula (2.5). Their plotsdoe [0.21,0.41] are shown
in the Fig. 8b. Positive values of, indicate chaotic transient behavior inside periodic wingo
Negative values of,, for the first window occur only fon,,., ~ 700 while for the second window
it happens already for ~ 200. It would suggest that in the second window rambling timeustho
be shorter than that in the first window.

In Figs. 8 b and d bifurcation diagram and AFTLEs are shown-foe 3.8, r, = 2.0 and
d € [0.928,0.9325]. A periodic window of period as well as signatures of transient chaos inside
of it are clearly visible.

Negative values of AFTLE in this case occur for the first timerf ~ 50.

We determined rambling tim&/,;,q for some periodic windows of the analyzed family of maps
using the distance method [3]. Valuesldt,,q and values ofy,., are given in Table 2 as was done
for the 1-dimensional family of maps.
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FIGURE 8. Bifurcation diagram for: a}, = 3.5, 7, = 4.0, d € [0, 1], b) r, = 3.8,
r, = 2.0, d € [0.928,0.9325]. Values of AFTLE), for: ¢) r, = 3.5, ry = 4.0,
d € [0.21,0.41] and forn = 30, n = 50, n = 100, n = 200, n = 500, n = 700,
d)yr, = 3.8, r, = 2.0, d € [0.928,0.9325] and from the top:n = 20, n = 30,
n =50

TABLE 2. Values of?M 1,4 andn,,, for a numbers of windows in the 2-dimensional
population model for the values of control parameter d,,,, that indicates the
most stable cycle

Te Ty dms window’s number nnes  Mibda  Mibd/Nneg
3.8 2 0.97489 5(5) 138 91.4 0.66
3.8 2 0.95966 7(4) 224 183.14 0.82
3.8 2 0.929 6 (3) 63 90.4 1.43
3.8 2 0919734 10(2) 165 144.6 0.88
3.8 2 0.9100699 12(1) 141 167.8 1.19
2.9 3.9 0.97079 3(5) 91 83.29 0.92
2.9 3.9 0.92554 5(4) 845 546.45 0.65
29 3.9 0.871994 8(3) 1230 768.84 0.63
29 3.9 0.846779 6(2) 106 112.6 1.06
29 3.9 0.827949 10(1) 198 158.4 0.80

In this case the rati@/,q /1., Varies from0.63 to 1.43 and it shows again that valuesaf.,
would be in general a poor quantitative measure of rambime inside the windows, although
they indicate close interdependence between the rambtimg /,,q and time dependence of
values of AFTLE. Modeling of quantitative dependence in¢hse of families of 2-dimensional

maps, however, will be much more complicated than in it ifexdase of families of 1-dimensional
maps [11].
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The presented numerical results show clearly that perieditution in population dynamics
is preceded by chaotic transient evolution. In consequesnan if the control parameters of the
systenmr (in the 1-dimensional family of mapsy),, r, andd (in the 2-dimensional family of maps)
correspond to asymptotically periodic evolution, one obse chaotic behavior for a shorter or
longer time in the case of majority of initial states of thestgyn. Transient chaos has a finite
duration but sometimes it is prolonged, and finite time ofeslagtion may be too short to see
transition to periodic behavior.

5. FINAL REMARKS

We have shown that although Lyapunov exponents charagtasigmptotic behavior of dynam-
ical systems their short-time estimates can be used todeaize chaotic transient evolution. As
an example we have taken two models of population dynamits. AFTLE’s dependence on the
number of iterations can reveal chaotic transient behakadplays significant role in the discussed
models. What's more, value of,., allows one to estimate, although rather roughly, duratibn o
chaotic transient behavior without necessity of estalvigslany criterion of the end of rambling
for an individual trajectory that is necessary both in theecaf the black intervals method [1, 3]
and in the distance method [11].
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