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FINITE-TIME LYAPUNOV EXPONENTS IN MODELS OF POPULATION DYNAMICS

KATARZYNA BUSZKO AND KRZYSZTOF STEFAŃSKI

ABSTRACT. In this paper we show how one can adapt Lapunov exponents forstudying chaotic tran-
sient behavior in nonlinear maps. We characterize this phenomenon introducing average finite-time
Lyapunov exponents. As examples for testing the method we take models of population dynamics
that can generate both asymptotic chaos and transient chaosinside periodic windows.

1. INTRODUCTION

Lyapunov exponents (LEs) belong to the best known instruments used to investigate nonlinear
dynamical systems. Majority of literature on such systems is focused mainly on their asymptotic
behavior that, depending on values of control parameters, can be either chaotic or periodic (in gen-
eral – regular). According to definition of LEs, the largest (in the case of discrete-time systems) or
the largest nonvanishing of them (in the case of continues-time systems) tells about the asymptotic
behavior of the analyzed dynamical system.

In models of biological or medical systems special attention is often payed to asymptotically
periodic behavior. It is well known, however, that such a behavior, in the case of systems from
periodic windows in bifurcation diagram, is preceded by chaotic transient behavior. Transient
chaos, although less exploited than its asymptotic counterpart, was discussed in quite few publica-
tions (cf. [1–3]). In this paper we show, that after some modifications it is possible to adapt LEs
for description of such behavior. Referring to definition ofLE, we introduce the notion of aver-
age finite-time Lyapunov Exponents (AFTLE) and use it to detect and estimate chaotic transient
behavior inside periodic windows.

The paper is arranged as follows: in Section 1 definition of LEis briefly recalled and definition
of the average finite-time Lyapunov exponents (AFTLE) is introduced. In Section 2 numerical
estimates of AFTLE for the family of 1-dimensional logisticmodel of population dynamics are
presented and discussed. In Section 3 similar estimates forthe family of 2-dimensional coupled
logistic maps are discussed.
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2. LYAPUNOV EXPONENTS

Lyapunov exponents characterize the average rate of growthof infinitesimal initial perturbations
of a state of a system. To recall definition of Lyapunov exponents for dynamical systems with
discrete time, let us consider the system(X, π) given by

(2.1) π(n, x) = fn(x) for n = 0, 1, . . . ,

whereX ⊂ R
d andf : X −→ X is a smooth function. IfX is 1-dimensional one obtains only

one LE expressed by the formula (see, e.g., [8]):

(2.2) λ(x0) = lim
n→∞

1

n

n−1∑

s=0

ln |f ′(xs)|, where xs = f s(x0),

In the case of 2-dimensionalX, whenf = (f1, f2), there appear two Lyapunov exponents defined
as:

(2.3) λi(x0) = lim
n→∞

1

n
ln ‖χi(n)‖ i = 1, 2,

whereχi(n) are eigenvalues of the matrix obtained by multiplying Jacobian matrices obtained in
each ofn iterations. Although LE formally depends on the initial state x0, in practice it does not
since it follows from the Multiplicative Ergodic Theorem [10], thatλi for fixed i and for almost
everyx0 ∈ X (with respect to the ergodic measureµ) has constant value.

It follows from the definition of LE that a systems is chaotic,when it has at least one positive
Lyapunov exponent and generates trajectories confined inside a compact subset ofX. In the case
of a discrete-time system negative signs of all LEs indicatean attracting periodic orbit. In practice
estimates of LEs for discrete-time systems can be obtained numerically by implementing Formulae
(2.2) or (2.3). LEs are defined fort −→ ∞, which means, that they are useful solely in the case
of description of the asymptotic behavior of dynamical systems. In reality, however, one cannot
observe infinitely long time series and quite often only transient behavior can be noticed. On the
other hand, such kind of behaviors like chaotic transients observed in dynamical systems disappear
whent −→ ∞. To be able to detect them, we introduce AFTLEλn, referring to the definition (2.2).

At first we define finite-time estimate of Lyapunov exponent (FTLE) for 1-dimensional maps

(2.4) λn(x0) =
1

n

n−1∑

i=0

ln|f ′(xi)|

Values ofλn(x0) depend strongly on the initial conditionx0, therefore we introduce average finite-
time Lyapunov exponentλn:

(2.5) λn =

∑J
j=1 λn(sj)

m
,

wheresj = x0(j) is the initial point of thejth of J trajectories over which the FTLEs are averaged
in the formula (2.5). It is clear that the estimate may dependon the distribution of initial points
sj but, contrary to the case of FTLE, where even a slight change of x0 can result in an essential
change of FTLE’s value, a slight change of distribution of initial points would change value of
AFTLE only marginally.
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In the case of 1-dimensional chaotic map apart from the AFTLEone can easily define density
based LE (DBLE):

(2.6) λ?
ρ =

∫
∞

−∞

log |f ′(x)|ρ(x)dx,

whereρ is a distribution density of initial points. It is obvious that the estimate depends on the
densityρ although weekly (in the same sense, the AFTLE does). In particular one should expect
that if ρ is the density of invariant measure DBLEλ? coincides with LEλ.

3. AVERAGE FINITE-TIME LYAPUNOV EXPONENTS IN ONE-DIMENSIONAL MODEL OF

POPULATION DYNAMICS

The best known and very simple dynamical system that can generate chaotic evolution is defined
by noninvertible logistic map that can describe evolution of an isolated, homogenous population.
The logistic model of population growth is given by the formula:

(3.1) xn+1 = f(xn, r) = rxn(1 − xn),

wherexn, xn+1 ∈ [0, 1], n ∈ N andr ∈ [0, 4] is control parameter of the family of logistic maps.
The model describes seasonal reproduction of a species. Individuals of the species live in an

isolated habitat and do not interact with other populations. Parameterr denotes the average number
of offsprings per specimen. In this model fertility’s reduction connected with competition for food
is taken into account by nonlinearity [4–6]. Character of dynamics of the population depends
on a particular value of the control parameterr.For some values ofr one can observe chaotic
evolution while for others the asymptotic dynamics can be periodic. In Fig.1a bifurcation diagram
of the family of logistic maps is shown. An ideal bifurcationdiagram would be a plot of sets
of accumulation points of typical trajectories versus the control parameterr thus representing
asymptotic properties of the family of maps. An approximation to such an ideal is created by
plotting points of trajectories with omission of their initial sections. The diagram from Fig. 1a
shows properties of logistic maps forr ∈ [1, 4]. In Fig. 1b LE for the same family is plotted
for the same range ofr. As one can see, chaotic behavior corresponds to positive values of LE
while negative values of LE appear for such values ofr for which logistic maps generate attracting
periodic orbits, including those inside periodic windows riving the bifurcation diagram.
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FIGURE 1. The family of logistic maps forr ∈ [1, 4]: a) bifurcation diagram, b)
diagram of LE

We are interested in the evolution of the system inside periodic windows, where the asymptotic
evolution of trajectories is periodic but their initial sections (sometimes quite long) typically exhibit
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chaotic features. It means, that asymptotically-periodicbehavior is preceded by transient chaotic
behavior. It can be illustrated by a slight modification of the procedure of generating bifurcation
diagram, by plotting also initial sections of trajectories. In Fig. 2a such a modified bifurcation
diagram forr ∈ [3.9901, 3.9905] andn = 100 initial points is shown. One observes features of
chaotic evolution for the whole range ofr. In Fig. 2b such a ’bifurcation diagram’ for the same
range ofr andn = 1000 initial points is shown. In this case a periodic window vaguely emerges.
It can be exposed more explicatively by creating a standard bifurcation diagram. Such a diagram is
shown in Fig. 2c. It is created of the final 200 points of sections of trajectoriesn = 10000 iterates
long. Now the window of period 5, vaguely visible in Fig. 2b, is pronounced.
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FIGURE 2. Bifurcation diagram of the family of logistic maps forr ∈
[3.9901, 3.9905] plotted for a) 100 initial iterates, b) 1000 initial iterates c) 200
final of 10000 iterates

To illustrate transient chaos we plotted two typical time series generated by the logistic map
(3.1) for r = 3.9903 with initial points: x0(1) = 0.2 andx0(2) = 0.89. In both cases the initial
evolution of trajectories exhibits chaotic features but after n ≈ 100 (Fig.3a) in the case of the first
trajectory and aftern ≈ 300 (Fig.3b) in the case of the second one the evolution becomes periodic.

LEs computed with (2.2) for the mentioned initial points are: λ(x0(1)) = −0.0499 andλ(x0(2)) =
−0.0499, which is consistent with the statement on independence of LE of the initial state. These
values of LE confirm, that for the analyzed value ofr the asymptotic behavior is periodic. Com-
putations forn = 100 give values of FTLEsλ100(x0(1)) = 0.179952, andλ100(x0(2)) = 0.079998
which indicates chaotic evolution, and shows strong dependence of FTLE on the initial state. The
analyzed chaotic behavior has finite duration but for sufficiently small number of iterations it is
impossible to distinguish such transient chaotic behaviorfrom the asymptotically chaotic one.
We name chaotic transient behavior ’rambling’ and, consequently, its duration is called ’rambling
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FIGURE 3. Time series generated by the logistic map forr = 3.9903 inside the
window (5, 3) for n = 500 iterates from the initial points: a)s1 = x0(1) = 0.2
b)s2 = x0(2) = 0.89

time’. For a single trajectory the rambling time is the number of points, that do not approach to
the periodic attractorA. The formal definition of the rambling time is based on the surrounding
area of the periodic attractorA within which any trajectory uniformly converges to the attractor.
The number of trajectory points outside the area is the rambling time. In our previous papers two
methods of determining rambling time, the black intervals method and the distance method [2, 3]
were presented.

Now we will show that the introduced AFTLE (2.5) characterizes transient chaos correctly.
The first problem to be solved, however, consists in checkinghow much values of AFTLE

computed according to Eq. (2.5) depend on the distribution of initial points. One can compute
AFTLE with initial points si uniformly distributed on the interval[0, 1]. Another natural choice
would be the distribution according to the invariant density ρinv outside periodic windows and
according to the quasi-invariant densityρqinv inside a window. The invariant measure densityρinv

is a fixed point of the Frobenius-Peron equation [2]:

(3.2) ρn+1(x) = F̂ ρn(x) =
∫ 1

0
δ[x − f(y)]ρn(y)dy

The invariant density in the case of asymptotically chaoticevolution is absolutely continuous,
while in the case of asymptotically periodic evolution it isa distribution. Unfortunately, in major-
ity of even quite simple cases, except for the case of invariant distribution for a system generating
periodic attractor, neither subsequent iteratesρn of the Frobenius-Peron equation nor its absolutely
continuous fixed pointρinv can be found in analytical form. Therefore, to learn about their shape
one is forced to construct their approximation using histograms. We have constructed such his-
tograms, dividing the interval[0, 1] into L equal subintervalsIl. The height of thelth column of
the histogram approximating densityρn is given byLjl/J wherejl denotes number of points of
any ofJ trajectories that fall into the subintervalIl in thenth iteration. Such histograms for the
windows(5, 1) and(5, 3), obtained from the uniform initial distribution aftern = 20 iterates are
shown in Fig. 4. As is visible, the distribution of the pointsis not uniform and asymptotically
it would consist of 5 columns. As comprehensive studies haveshown, for intermediate number
of iterations three components: the ephemericρeph, the quasi-invariantρqinv and the asymptotic
ρasp can be distinguished in the densityρ [2]. The ephemeric componentρeph vanishes rapidly,
the quasi-invariant componentρqinv decreases geometrically withn, keeping its shape practically
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unchanged, and the asymptotic componentρasp increases withn and has 5 accumulation points in
the form of linear combinations of 5 Dirac deltas.
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FIGURE 4. Histograms for distribution of points for a set of trajectories for: a)
r = 3.74 inside the window(5, 1), b) r = 3.99029 inside the window(5, 3).

In our numerical tests AFTLE (2.5) have been computed for initial pointssi distributed uni-
formly on the[0, 1] interval and according to the histograms obtained aftern = 104 iterations
for J = 103 trajectories with initial states distributed uniformly onthe [0, 1] interval. We also
computed DBLEs according to Eq. (2.6) for the uniform density on the [0,1] interval and for the
histogram approximatingρinv outside a window andρqinv inside it. Numerical values of all four
parameters for three values of the control parameterr near the window (5,3) and for three values
inside it are presented in Fig 5. Values of LE (2.6) are also shown for comparison.

One can notice that values of DBLE (2.6) for the uniform density has practically the same
magnitude for all tested values ofr, both outside and inside the window. Values of DBLE for the
histograms approximatingρinv or ρqinv are slightly larger and practically coincide with values of
LE, AFTLE while outside the window, and inside the window they are slightly smaller than the
values of DBLE for uniform density but remain positive. On the other hand, values of LE and of
AFTLE both for uniform and quasi-invariant distribution ofinitial points are almost identical also
inside the window. Although withn = 104 values of AFTLE for the uniform and quasi-invariant
distribution barely differ, the latter one gives a bit better approximation to LE.

In Fig. 6 one can see plots of AFTLEλn versusr for all three windows of period 5 and for
various numbers of iterationsn. Fig. 6a shows the AFTLEs:λ10, λ30, andλ40 for the window
(5, 1), which is the widest window of period 5. As is clear, negativevalues of AFTLE appear only
for n ≈ 40 iterations for values of control parameterr close torsst for which the superstable cycle
occurs. In Fig. 6b the AFTLEs:λ25, λ50, andλ100 for the window (5,2) are plotted. In this case
only λ100 has negative values for values ofr ≈ rsst. It means that forn ≈ 100 andr close to
rsst chaotic transient behavior is statistically over althoughsome rambling trajectories may still
remain. In Fig. 6c similar plots ofλn for the window(5, 3), which is the narrowest window of
period5, and forn = 100, n = 300, n = 500 are shown. In this case onlyλ500 has negative values.

The above results suggest a connection between the ramblingtime M rb(rsst) and the value of
n = nneg for which negative values ofλnneg

appear in periodic window for the first time. We
have determined the rambling timeM rb(rsst) [2,3] and values ofnneg for all periodic windows of
periods from 3 to 8. The results are shown in Table 1.



FINITE-TIME LYAPUNOV EXPONENTS IN MODELS OF POPULATION DYNAMICS 7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 3.734  3.735  3.736  3.737  3.738  3.739  3.74  3.741  3.742

LE
,A

S
T

LE

r

FIGURE 5. Values of Lyapunov exponents in the vicinity (3 points from the left)
and inside (3 points from the right) the window(5, 1): LE (2.1)-+, AFTLE (2.5)
with uniformly distributed initial points on the interval[0, 1] – ×, AFLTE (2.5)
with initial points distributed according to the measureρ –�,. . . with uniformly dis-
tributed initial points on the interval[0, 1]-�,. . . (2.6) with initial points uniformly
distributed on the interval[0, 1],. . . (2.6) with initial points distributed according to
the measureρ-�.

Apparentlynneg is a measure of duration of transient chaos and its values shown in Table 1 agree
with the rule revealed in our earlier papers that in the case of the family of logistic maps the nar-
rower the window, the longer the transient chaos duration [2,3]. Values of the ratioM rb(rsst)/nneg

that vary from0.5 to 3.0 shown in Table 1, however, force one to admit thatnneg is a less precise
measure of duration of transient chaos than rambling timeM rb. Nevertheless it is clear that the
pace at which AFTLE inside a periodic windows decreases is closely connected with rambling
time for maps inside it. A model describing this process quantitatively is presented in [11].

4. AVERAGE FINITE-TIME LYAPUNOV EXPONENTS IN2-D MODEL OF POPULATION

DYNAMICS

Such investigations can be extended onto the 2-dimensionallogistic model of population dy-
namics, given by the formula:

xn+1 = dxnrx(1 − xn) + (1 − d)ynry(1 − yn),

yn+1 = (1 − d)xnrx(1 − xn) + dynry(1 − yn),(4.1)

wherexn, xn+1, yn, yn+1 ∈ [0, 1], n is natural number,rx, ry > 0 and d ∈ [0, 1]. The model
describes two colonies of a species, that interact by mutualmigration. The migration of individuals
may change population dynamics in both colonies. Parameters rx andry represent growth rates
in the colonies and the isolation parameterd represents coupling between their dynamics. The
coupling is strongest ford = 0 while for d = 1 the colonies do not interact. The simplest,
symmetric caserx = ry was discussed previously [4]. In Fig. 7a bifurcation diagram with respect
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FIGURE 6. Plots of AFTLEλn inside period 5 windows: a)(5, 1) – from the top
to the bottom – forn = 10, n = 30, n = 40, b) (5, 2) for n = 25, n = 50, and
n = 100, c) (5, 3) for n = 100, n = 300, andn = 500

to d is plotted forrx = ry = 4. Our attention is focused on the two periodic windows visible in the
diagram. In Fig. 7b values of AFTLE:λ20, λ40, λ50, λ100, andλ200 are plotted.

Outside periodic windows, as expected, values of AFTLEλn do not depend onn. Inside the
periodic windows they decrease withn, and become negative only forn = 200. For n < 200
transient chaotic behavior prevails.
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FIGURE 7. a) Bifurcation diagram of the family (4.1) forrx = ry = 4.0, d ∈ [0, 1],
b) Values of AFTLEλn: from the top to the bottom – forn = 20, n = 40, n = 50,
n = 100, andn = 200

An interesting phenomena can be observed after breaking symmetry between the colonies (rx 6=
ry). This can be seen in Fig. 8a where bifurcation diagram forrx = 3.5, ry = 4, andd ∈ [0, 1] is
shown. Two wide periodic windows of period5 are visible in the diagram: one ford ∈ [0.2, 0.3]
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TABLE 1. Values of rambling timeM rb(rsst) andnneg for windows of periodsk = 3, . . . , 8

window’s number rsst nneg M rb Mrb/nneg

(3,1) 3.831874 15 25 1.6
(4,1) 3.960270 56 118 2.1
(5,1) 3.738915 32 53 1.6
(5,2) 3.905706 58 119 2.05
(5,3) 3.990267 169 469 2.77
(6,1) 3.627557 29 45 1.55
(6,2) 3.937536 162 375 2.3
(6,3) 3.977766 283 616 2.17
(6,4) 3.997583 1106 2089 1.8
(7,1) 3.701769 71 147 2.0
(7,2) 3.774214 77 180 2.3
(7,3) 3.886046 146 349 2.3
(7,4) 3.922193 198 585 2.95
(7,5) 3.951032 341 680 1.99
(7,6) 3.968977 343 726 2.1
(7,7) 3.984747 685 1307 1.9
(7,8) 3.994538 1183 2131 1.8
(7,9) 3.999397 4348 6155 1.41
(8,1) 3.662192 90 221 2.45
(8,2) 3.800771 183 311 1.6
(8,3) 3.870541 262 448 1.7
(8,4) 3.899469 384 531 1.3
(8,5) 3.912047 381 597 1.5
(8,6) 3.930473 886 1173 1.32
(8,7) 3.944213 1012 1334 1.3
(8,8) 3.973724 1816 2044 1.12
(8,9) 3.9814099 2619 2334 0.8
(8,10) 3.987745 2935 3359 1.14
(8,11) 3.992519 4408 4725 1.07
(8,12) 3.996219 4948 6162 1.24
(8,13) 3.998642 12978 10854 1.19
(8,14) 3.999849 61713 30649 0.49

and the second ford ∈ [0.32, 0.4]. We have estimated the AFTLEs:λ30, λ50, λ100, λ200, λ500,
andλ700 inside these windows, using formula (2.5). Their plots ford ∈ [0.21, 0.41] are shown
in the Fig. 8b. Positive values ofλn indicate chaotic transient behavior inside periodic windows.
Negative values ofλn for the first window occur only fornneg ≈ 700 while for the second window
it happens already forn ≈ 200. It would suggest that in the second window rambling time should
be shorter than that in the first window.

In Figs. 8 b and d bifurcation diagram and AFTLEs are shown forrx = 3.8, ry = 2.0 and
d ∈ [0.928, 0.9325]. A periodic window of period6 as well as signatures of transient chaos inside
of it are clearly visible.

Negative values of AFTLE in this case occur for the first time for n ≈ 50.
We determined rambling timeM rbd for some periodic windows of the analyzed family of maps

using the distance method [3]. Values ofM rbd and values ofnneg are given in Table 2 as was done
for the 1-dimensional family of maps.
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FIGURE 8. Bifurcation diagram for: a)rx = 3.5, ry = 4.0, d ∈ [0, 1], b) rx = 3.8,
ry = 2.0, d ∈ [0.928, 0.9325]. Values of AFTLEλn for: c) rx = 3.5, ry = 4.0,
d ∈ [0.21, 0.41] and forn = 30, n = 50, n = 100, n = 200, n = 500, n = 700,
d)rx = 3.8, ry = 2.0, d ∈ [0.928, 0.9325] and from the top:n = 20, n = 30,
n = 50

TABLE 2. Values ofM rbd andnneg for a numbers of windows in the 2-dimensional
population model for the values of control parameterd = dms, that indicates the
most stable cycle

rx ry dms window’s number nneg M rbd M rbd/nneg

3.8 2 0.97489 5 (5) 138 91.4 0.66
3.8 2 0.95966 7 (4) 224 183.14 0.82
3.8 2 0.929 6 (3) 63 90.4 1.43
3.8 2 0.919734 10 (2) 165 144.6 0.88
3.8 2 0.9100699 12 (1) 141 167.8 1.19
2.9 3.9 0.97079 3 (5) 91 83.29 0.92
2.9 3.9 0.92554 5 (4) 845 546.45 0.65
2.9 3.9 0.871994 8 (3) 1230 768.84 0.63
2.9 3.9 0.846779 6 (2) 106 112.6 1.06
2.9 3.9 0.827949 10 (1) 198 158.4 0.80

In this case the ratioM rbd/nneg varies from0.63 to 1.43 and it shows again that values ofnneg

would be in general a poor quantitative measure of rambling time inside the windows, although
they indicate close interdependence between the rambling time M rbd and time dependence of
values of AFTLE. Modeling of quantitative dependence in thecase of families of 2-dimensional
maps, however, will be much more complicated than in it is in the case of families of 1-dimensional
maps [11].
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The presented numerical results show clearly that periodicevolution in population dynamics
is preceded by chaotic transient evolution. In consequence, even if the control parameters of the
systemr (in the 1-dimensional family of maps),rx, ry andd (in the 2-dimensional family of maps)
correspond to asymptotically periodic evolution, one observes chaotic behavior for a shorter or
longer time in the case of majority of initial states of the system. Transient chaos has a finite
duration but sometimes it is prolonged, and finite time of observation may be too short to see
transition to periodic behavior.

5. FINAL REMARKS

We have shown that although Lyapunov exponents characterize asymptotic behavior of dynam-
ical systems their short-time estimates can be used to characterize chaotic transient evolution. As
an example we have taken two models of population dynamics. The AFTLE’s dependence on the
number of iterations can reveal chaotic transient behaviorthat plays significant role in the discussed
models. What’s more, value ofnneg allows one to estimate, although rather roughly, duration of
chaotic transient behavior without necessity of establishing any criterion of the end of rambling
for an individual trajectory that is necessary both in the case of the black intervals method [1, 3]
and in the distance method [11].
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