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RELATIVE MEASURABILITY AND ITS APPLICATIONS

JACEK LEŚKOW

ABSTRACT. The goal of this paper is to introduce the concept of the relative measurability as a tool
in building models for the analysis of time series and signals. Relative measurability allows to avoid
using unverifiable assumptions such as mixing. However, with the concept of relative measurability
one can get convergence of estimators and even define resampling procedures as evidenced in the
research of the Author. The novelty of this article are the results corresponding to incorporating the
resampling schemes into relative measurability.

1. INTRODUCTION

In recent years, there is a growing interest in providing mathematical and statistical models for
large data sets. Especially in more complex data structures such as time series or signals one is left
with the classical stochastic models that do not provide adequate tools to deal with the complexity
of the data nor give solutions that are compatible with the needs of the data analysts. The Author
of this article together with his collaborators (see e.g. [19] or [20]) since mid 2000’s are proposing
an alternative approach to analysis of time series and signals using the relative measurability and
fraction of time approach.

The fraction of time approach was initiated as a tool of analysis of cyclostationary signals by
Gardner in [11]. This approach allowed to introduce well known concepts such as expectations,
moments, estimators without the burden of introducing the stochastic approach. One also has to
bear in mind, that many times in the reality of the observations of time series there is only one
realization available. For example, there is absolutely no chance of having second opportunity to
observe the time series corresponding to the daily DIJA stock market index in any given year. The
stochastic approach has in-built assumption that repeating observations one gets better precision
of the estimates. For the stochastic approach for time series the absence of repetitions can be
mitigated with the ergodicity assumptions, when time averages can approximate the ensemble
averages. However, this is true only when the time series model has ergodic property. Verifying
the property of ergodicity for real observations is next to impossible when the underlying model
is not gaussian. Therefore, the approach using the fraction-of-time and relative measurability is
a viable alternative.
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Our paper will be organized as follows. The Section 2 contains preliminaries corresponding to
the fraction of time approach, relative measurability and fundamental results from the previous
research of the Author and his collaborators. Section 3 presents original approach to introduce the
resampling techniques to the fraction of time context. Section 4 presents discussion on potential
applications and open questions. In all considerations we assume that the considered time series
or signal x(t) is a real Lebesgue measurable function.

2. PRELIMINARIES

2.0.1. Relative measurability of a function.

Definition 2.1. A function x(t) is called relatively measurable (RM) if and only if the set
{t ∈ R : x(t) ≤ ξ} is relatively measurable for every ξ ∈ R− Ξ0, where Ξ0 is at most a countable
set of points.

For each RM function x(t) we can define a distribution function

(2.1)

Fx(ξ)
def= µR({t ∈ R : x(t) ≤ ξ})
def= lim

T→∞

1
T
µ({t ∈ [−T/2, T/2] : x(t) ≤ ξ})

= lim
T→∞

1
T

∫ T/2

−T/2
1(−∞,ξ](x(t)) dt

in all points ξ where the limit exists.
In the above considerations, µR corresponds to the relative measure on the real line induced by

the RM function x(·) while µ is the Lebesgue measure. For details see [19].
It is relatively easy to see (check [19]) that Fx(ξ) defined above is a cdf, with one exception. It

is not right-continuous, since the relative measure µR is not σ-additive. However, with the help of
Fx(ξ) one can define moments, cumulants, characteristic functions - that is all necessary elements
of statistical inference for the considered signal.

We will provide now some examples of RM functions that are very important in applications.

2.0.2. Almost periodic functions. Let us recall that a function x(t) is said to be almost periodic in
the sense of Bohr (B-AP) if for every ε > 0 there exists lε such that for any interval I of the length
lε there exists τε ∈ I such that

sup
t∈R
|x(t+ τε)− x(t)| < ε.

More details on B-AP functions can be found in the classical work of Besicovitch [3].
It is very well known that any B-AP function can be uniformly approximated by trigonometric

polynomial. From the research of the Author it is also clear (see [19]) that every B-AP function is
RM.

Almost periodic functions are extremely important in applications, especially as models of phe-
nomena for signals that are approximately periodic. In the engineering literature such signals are
frequently called cyclostationary. In the recent survey of the literature (see [13]) there are at least
2500 papers published on the topic. Among those, the most prominent applications are in mechan-
ical diagnostics (see e.g. [1]), vibroacoustics [17] and telecommunication signals processing [20].
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2.0.3. Asymptotically B-AP functions. (AAP functions). The next, more general class of functions
are asymptotically almost periodic functions. The rigorous definition is as follows.

The function x(t) is AAP if it can be represented via

x(t) def= xAP (t) + η(t),

where η(t) ∈ L1
loc(R) and lim|t|→∞ η(t) = 0.

In other words, asymptotically almost periodic function is a sum of an almost periodic function
xAP (t) and a locally integrable function η(t) that vanishes in both infinities. The need for such
functions comes again from signal processing. The signal processing interpretation of the defini-
tion of AAP function is quite intuitive. The signal x(t) is AAP when it can be decomposed into
a persistent part xAP (t) (note that AP functions do not vanish in infinities!) and into a transient
part η(t) that, for large observation interval does not contribute much to expectation, variance etc.
More details on that can be found in [20].

2.0.4. Pseudorandom functions. We will now consider a function x(t) defined as

x(t) def= cos(2πP ([t])),

where P (t) is the lth order polynomial with l ≥ 2 and at least one of its coefficient is irrational.
Such a function, in the signal processing context, is called a pseudorandom function (check [2]).
It is also interesting to see that this function is not AP and is not AAP however it is RM. Another
example in this class of functions is a function y(t) defined as

y(t) def= cos(π[P ([t])]),

where as before P (·) is the lth order polynomial with l ≥ 2 and at least one of its coefficient is
irrational. For more discussion on properties and applications of pseudorandom functions we refer
the reader to [19].

Our goal right now is to establish the Central Limit Theorem for the sequence of independent
RM functions. In order to do that, we will need concepts like: joint relative measurability of the
sequence of RM functions, or independence of RM functions. We will also provide examples of
such sequences of RM functions.

2.1. Joint relative measurability. Let us now assume that we have a sequence of relatively mea-
surable functions denoted as ϕ1(t), . . . , ϕn(t). We have the following

Definition 2.2. The Lebesgue measurable functions ϕ1(t), . . . , ϕn(t), t ∈ R, are said to be jointly
relatively measurable if the limit

Fϕ1···ϕn(ξ1, . . . , ξn) def=

µR({t ∈ R : ϕ1(t) ≤ ξ1} ∩ · · · ∩ {t ∈ R : ϕn(t) ≤ ξn}) =

lim
T→∞

1
T
µ({t ∈ [−T/2, T/2] : ϕ1(t) ≤ ξ1, . . . , ϕn(t) ≤ ξn})

exists for all (ξ1, . . . , ξn) ∈ Rn − Ξ0, where Ξ0 is at most a countable set of (n − 1)-dimensional
manifolds of Rn.
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This definition is required to consider a joint cdf generated by the sequence ϕ1(t), . . . , ϕn(t).
However, as a warning, we would like to stipulate here that there are RM functions x(t) such that
even for some τ ∈ R the original x(t) and its shifted version x(t + τ) are not jointly RM. So
one needs to carefully check the sufficient conditions for the existence of the limit in the above
definition. Some details on that are included in [19] and are also topic of the ongoing research of
the Author and his research group.

We need to move on with our task of establishing the Central Limit Theorem for the sequence
of RM functions. For that we need a concept of independence of RM functions.

2.2. Independence of RM functions. Again, as before we consider a sequence ϕ1(t), . . . , ϕn(t)
of relatively measurable functions. We have the following
Definition 2.3. The functions ϕ1(t), . . . , ϕn(t) are said to be independent approach if and only if
the sets

A1
def= {t ∈ R : ϕ1(t) ≤ ξ1}, . . . , An

def= {t ∈ R : ϕn(t) ≤ ξn}
are independent ∀(ξ1, . . . , ξn) ∈ Rn−Ξ0, where Ξ0 is at most a countable set of (n−1)-dimensional
manifolds of Rn.

It is interesting to study what type of conditions enforce the independence of RM functions. The
most prominent example are two sinusoids x(t) = sin(πλ1t) and y(t) = sin(πλ2t) such that the
frequencies λ1 and λ2 are not relatively rational (in the signal processing language: incommensu-
rate frequencies). Then x and y are clearly RM (since they are AP) and are also independent and
jointly RM.

2.3. Central Limit Theorem of RM functions. Let us consider a sequence of real-valued func-
tions {ϕk(t)}k∈N such that the following assumptions are fulfilled.

(A1) For every k the function ϕk(t) is zero mean that is

lim
T→∞

1
T

∫ T/2

−T/2
ϕk(t)dt = 0.

(A2) The functions ϕk(t) have temporal mean-square values

lim
T→∞

1
T

∫ T/2

−T/2
ϕ2
k(t)dt = σ2

k <∞

such that

lim
n→∞

1
n

n∑
k=1

σ2
k = σ2 <∞ .

For the Central Limit Theorem we will also need the following
(A3) The functions ϕk(t) are such that

ak
def= lim sup

T→∞

1
T

∫ T/2

−T/2
|ϕk(t)|3dt <∞

with

n∑
k=1

ak = o(n3/2) as n→∞.
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Let us now define the scaled average of the sequence ϕ1(t), . . . , ϕn(t):

xn(t) def= 1√
n

n∑
k=1

ϕk(t).

Obviously, the square root in scaling in the above formula is related to the speed of convergence
of variances as stipulated in the assumption A2.

With the assumptions A1, A2, A3 we are now ready to formulate the Central Limit Theorem.

Theorem 2.4. Let {ϕk(t)}k∈N be a sequence of jointly RM independent functions satisfying as-
sumptions A1, A2, and A3. We have

lim
n→∞

µR

(
{t ∈ R : a < xn(t) ≤ b}

)
= µR

(
{t ∈ R : a < x(t) ≤ b}

)
=

= (1/2πσ2)(1/2)
∫ b

a
e−

ξ2

2σ2 dξ .

Moreover, x(t) has a Gaussian fraction-of-time (FOT) distribution function.

The Proof of the CLT follows from the results [19] and will not be presented here.

Remark. Note that the above CLT was obtained with only qualitative assumptions made for the
underlying sequence of RM functions {ϕk(t)}k∈N . In practice, it is relatively straightforward
to check the independence of the system of functions as this can be translated to checking the
relationships between the frequencies of the underlying Fourier series, if for example, the signals
are B-AP. On the other hand, in the stochastic approach, in order to get a CLT for the time series
or stochastic processes, one needs to introduce the mixing assumptions. To make our argument
clearer, we recall now the concept of α-mixing, this concept being quite popular in recent research
for nonstationary signals and stochastic processes (see e.g. [8]). The time series {X(t) : t ∈ Z} is
called α-mixing if αX(t)→ 0 for t→∞, where

αX(t) = sup |P (A ∩B)− P (A)P (B)|.

Here the supremum is taken over all s ∈ Z and all sets A ∈ FX(−∞, s) and B ∈ FX(s + t,∞),
where FX(t1, t2) corresponds to the σ-algebra generated by {X(t) : t1 ≤ t ≤ t2}.

A quick look into the above mixing condition proves the point. In order to check the validity
of mixing condition in the stochastic context, one has to work with the (possibly nonstationary)
distributions of the time series on hand. In reality, this can be only verified when time series is
gaussian. On the other hand, the fraction-of-time (FOT) approach via relative measurability gives
the CLT without any assumptions related to the stochastic distributions. It is enough to check the
relationships between the frequencies of Fourier series approximating our signals.

The meaning of the result above is quite important. Provided that the technical assumptions (like
e.g A1, A2 and A3) are true then the fraction of time probability related to the scaled average of the
sequence of independent RM functions is becoming gaussian. Note, however, one inconvenience.
In order to use this theorem in practice, one would need to estimate the asymptotic variance σ2.
This is far from obvious but, on the other hand, is necessary to get confidence bounds on the
estimates related with the scaled average. In order to solve this problem, the next section of this
article is dedicated to possibilities of introducing bootstrap resampling techniques in the context
of RM functions and FOT approach.
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3. BOOTSTRAPPING THE RELATIVELY MEASURABLE FUNCTIONS

For the convenience of the readers, let us recall here the most fundamental ideas of bootstrap in
the classical stochastic context. Let X1, . . . , Xn be an iid sequence from the distribution F . Let θ
be the parameter describing the cdf F . In this context, statistical inference has three fundamental
goals:

• building optimal estimators θ̂ of θ
• constructing the confidence intervals for θ
• testing procedures for the unknown parameter θ

Let us take for example the case of inference about the expected value µ = EXF . Maximum
likelihood estimate of this parameter is the sample mean

µ̂n = 1
n

n∑
i=1

Xi.

We measure the error and variability of this estimate by building a confidence interval for µ. Such
interval is constructed using the central limit theorem and has the form:

µ̂n ± zα/2 · SE(µ̂n).
Recall that even in this simple case sometimes it is not so evident whether for small n the central

limit theorem can be used. It is already well known, however, that the sampling distribution of the
maximum likelihood estimate can be approximated via bootstrapping. In what follows, we give
fundamentals of the bootstrap procedure.

Nonparametric bootstrap for iid sequence.

Let X1, . . . , Xn - iid from the distribution F . Our goal is to build a confidence interval around
the mean µ. Instead of using the formula µ̂n ±zα/2 ·SE(µ̂n) we can use nonparametric bootstrap.

• Step 1: Draw with replacement X∗11 , . . . , X
∗1
n from X1, . . . , Xn.

• Step 2: Calculate µ∗1n = 1
n

∑n
j=1 X

∗1
j .

• Step 3: Repeat Step 1 and 2 B times to get µ∗1n , . . . , µ
∗B
n .

• Step 4: Calculate the confidence interval from Step 3.
The nonparametric bootstrap defined above is consistent, that is the quantiles that can be derived

from the procedure above are asymptotically the same as the quantiles of the normal distribution
that corresponds to the sample mean for large n. However, for small n the bootstrap approximation
provides better results than the normal law. For details see e.g. [8].

Now the goal of our work is to introduce the concept of bootstrap for the weak convergence of
the RM functions. As before, assume that {ϕk(t)}k∈N be a sequence of jointly RM independent
functions satisfying assumptions A1, A2, and A3. Assume also that xn(t) is the scaled average
that is xn(t) def= 1√

n

∑n
k=1 ϕk(t).

Our line of arguing will be now as follows. We will consider a bootstrap procedure on the
sequence ϕ1(t), . . . , ϕn(t). We will then argue that the quantiles derived by bootstrap will be
asymptotically the same as quantiles from the gaussian distribution obtained in the Central Limit
Theorem.

Let us formulate the bootstrap algoritheorem for the sequence of independent RM functions. Re-
call that our objective is to replace the asymptotic gaussian relative measure with the density given
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by Theorem by an empirical approximation calculated on the basis of the sequence {ϕk(t)}k∈N .
In order to argue that the bootstrap procedure is consistent, we will use the m out of n bootstrap
presented in [22].

Bootstrapping the independent RM functions

• Step 1: Draw without replacement first bootstrap sample of the sizem, that is get functions
ϕ∗11 (t), . . . , ϕ∗1m (t) from the original system ϕ1(t), . . . , ϕn(t).
• Step 2: Calculate x∗1m (t) = 1√

m

∑m
j=1 ϕ

∗1
j (t).

• Step 3: Repeat Step 1 and 2 B times to get the replicates x∗1m (t), . . . , x∗Bn (t).
• Step 4: Calculate confidence interval from the empirical distribution obtained in Step 3.

If one looks at the algoritheorem above, the fundamental question is the choice of the block size
m. The minimal conditions presented in [22] stipulate that the consistency of this type of bootstrap
procedure holds when m

n
→ 0. A more detailed discussion on the choice of the block size m is the

topic of the current research of the Author.

4. APPLICATIONS

As it was mentioned earlier, almost periodic functions (B-AP), asymptotically almost periodic
functions (AAP), pseudorandom functions are indispensable in modern statistical inference for
mechanical signals, telecommunication signals or vibroacoustic signals (see [1], [21] and [17],
respectively). In order to have a clearer perspective, let us analyze x(t) - the acceleration signals of
the car engine (for details see [1]). After routine filtering, such signal can be considered mean zero
and cyclostationary. Each reader of this article can easily generate (and listen) to such signal by
entering her or his car, starting the motor and letting it idle to listen for acceleration. One does not
have to be an expert in mechanical signal processing to know that if motor works properly then we
will be most likely listening to a rather smooth uniform signal of an idling motor. However, with
an old clunker, it is likely that the idling signal will have occasional hick-ups or bumps. How this
translates into relative measurability and central limit theorem and bootstrap? The signal generated
by properly working engine, after routine filtering, will have mean zero. Now we can associate
the sequence {ϕk(t)}k∈N with several runs of the idling engine. It will be rather straightforward
to check that assumptions A1, A2 and A3 hold true. If the mean of the signal is zero, then the
relative measure built on {ϕk(t)}k∈N should converge to a gaussian mean-zero relative measure
with the variance σ2. However, in order to run a formal test of hypotheses for the mean zero,
one will have to estimate the unknown σ2. This can be quite problematic, given the complexity
of the cyclostationary signals {ϕk(t)}k∈N on hand. Instead, one should apply the algorithm of
bootstrapping the independent RM functions to get the confidence interval from Step 4. If zero
will be inside such a confidence interval then we can say that the engine works normally while
idling. If not, then we better have our car inspected.
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ture Notes in Mathematical Economics, editors: Leśkow, Puchet and Punzo, 183–200, Springer Verlag 2004.
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