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SYNCHRONIZATION PROBLEM OF THE COUPLED MODIFIED VAN DER POL
EQUATIONS IN A MODEL OF THE HEART ACTION

BEATA JACKOWSKA-ZDUNIAK

ABSTRACT. In this paper, modified van der Pol equations are considered as a description of the
heart action. The physiological model functions over a narrow range of parameters and enables
obtaining stable behaviour which is important in the case of a biological system. When some types
of pathologies occur in the heart, it is possible to obtain chaotic behaviour. The purpose was to
compare how two types of couplings (unidirectional and bidirectional) affect the behaviour of the
van der Pol system. The coupling occurs in a healthy conduction system between the SA and AV
nodes, however, under some circumstances a pathological coupling may occur. The van der Pol
oscillator is a relaxation oscillator which can be synchronized. The synchronization properties of
such system have also been studied as part of this paper. A mathematical model was created and
numerical analysis of this system were performed in this paper.

1. INTRODUCTION

The paper describes research investigating the electrical conduction system of the human heart.
In addition to ordinarily working fibres, the heart contains pacemaker centres composed of special
cells that resemble embryonic cells. These cells make part of the cardiac conduction system and
form the following structures: the sinoatrial node (SA), the atrioventricular node (AV) and the
His-Purkinje system, [11]. The key elements of the conduction system, as considered in this paper,
are the SA node and the AV node. The two nodes are modelled based on the modified van der Pol
oscillator. This model helps to demonstrate phenomena observed in clinical experiments such as
Holter recordings. The purpose of this paper was to create a model for describing the behaviour
typical for sinoatrial block. The initial cardiac pulse is usually generated in the SA node and
carried through the atria to the AV node. When SA block occurs, an electrical impulse is delayed or
blocked on the way to the atria, thus delaying atria depolarization. This is different from AV block
that occurs in the AV node and delays ventricular depolarization. SA blocks are divided into three
main types based on the length of the delay. First degree SA block is characterized by a prolonged
conduction time from the SA node to the surrounding atrial tissue. Second degree block can be
divided into two types: Wenckebach block and type II. Wenckebach block are characterized by
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irregular rhythm. With second degree type I block, the interval is less than twice the minimum
length of the period. Type II block shows a regular rhythm which may be either normal or slow.
It is followed by an interval equal to a multiple of the period. The conduction across the SA node
is normal until up to the time point when the interval occurs and the conduction is blocked. Third
degree block is characterized by no atrial activity. The cardiac rhythm is determined by an escape
rhythm. In biological systems, it is an extremely important phenomenon of synchronization, it
is responsible for many of the periodic processes in the body, e.g. the coupling induced in the
pituitary gland is responsible for the production of thyroid hormones. If the two components were
not synchronized, the endocrine system could not function properly. The main oscillator in the
human body, i.e. the heart, also needs to be properly synchronized. This paper discusses different
types of couplings the AV node and SA nodes and their impact on the synchronization of the two
oscillators. The analysis of synchronization of various modifications of the van der Pol model
has been described in a number of papers. Areas of synchronization near the main parametric
resonance and transition conditions from regular to chaotic motion are presented in paper [11]. The
phenomenon of complete synchronization within a network of four coupled oscillators is described
in [6]. In [9], the authors investigated mechanisms of various bifurcation phenomena observed in
Bonhoffer van der Pol neurons coupled through the characteristics of synaptic transmissions with
a time delay. Synchronization phenomena in van der Pol oscillators coupled via a time-varying
resistor are researched in [10]. However, these papers provide no examples of application of this
model for recreating a pathological behavior of the electrical-conduction system of the human
heart,and therefore the ranges of parameters considered are wider than those that can be used in
medical applications. In [8, 13], the authors showed that two coupled van der Pol oscillators can
be used for modelling the behaviour of the cardiac conduction system and they described a heart
block as a pathology based on coupled van der Pol oscillators. The van der Pol oscillator provides
rich dynamical behavior which we would like to exploit in modeling of the heart action [5] also
synchronization phenomena.

1.1. Mathematical model. Because each node is a self-exciting pacemaker, it can be described
as a relaxation oscillator, i.e. the van der Pol oscillator. The van der Pol and van der Mark model
was developed as a model in the electronic circuit theory in 1927:

(1.1) ẍ+ a(x2 − 1)ẋ+ x = 0, a > 0,

where a(x2−1) is a damping coefficient given as a function of x, negative for |x| < 1 and positive
for |x| > 1. The Eq. (1.1) posses a periodic solution that attracts other solution except the trivial
one at the unique equilibrium point x = ẋ = 0. The phase portraits depend on a. If a = 0, there is
a harmonic oscillator and all solutions are periodic with x(t) = a1 cos t + a2 sin t. If a > 0, there
is a stable limit cycle but if a increasing the nonlinearity of system also increasing. The dynamics
of Eq. (1.1) is well known in the literature [1, 2, 4]. The van der Pol model needs to be changed
so as to reproduce the actual features of the action potential. Postnov [7] introduced modifications
that maintain the required structure of the phase space. More precisely, he substituted a linear term
by a nonlinear cubic force called the Duffing term.

(1.2) ẍ+ a(x2 − µ)ẋ+ x(x+ d)(x+ 2d)
d2 = 0,

where a, µ, d are positive control parameters.
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This model can be considered as a SA or AV node model. The mutual interaction of a limit
cycle present around an unstable focus with a saddle and a stable node is the main property of
a modified relaxation oscillator. As a result, the refraction period and nonlinear phase sensitivity
of the action potential of node cells are reproduced correctly. A solution of this equation in time
presents the action potential whereas a solution in velocity allows to obtain very important phase
portrait. It can be easily seen that the main qualitative difference between Eqs. (1.1) and (1.2) is
the emergence of two additional steady states, x∗

2 = −d and x∗
3 = −2d. As before, x∗

1 = 0 is
an unstable node or focus surrounded by a unique stable limit cycle, x∗

2 = −d is a saddle and
x∗

3 = −2d is a focus or a node and can be either stable or unstable, depending on the sign of
4d2 − µ. In the case considered by Postnov [7], the first steady state is an unstable focus, while
the third one is a stable node which attracts all solutions, starting from the right-hand side of the
stable manifold of the saddle x∗

2. However, in the considered model (1.2) it is difficult to regulate
the location of steady states in the phase space, so to reproduce the heart behavior new parameter e
is introduced. It should be noted that this modification does not affect the phase portrait, while the
location of steady states can be modified. In order to simplify a frequency regulation and obtain the
proper timescale the ed factor in the denominator is substituted with the independent coefficient f
which corresponds to the frequency of harmonic oscillator [3]. The final version of the model is
given in its two variable first-order form [3, 12]:

(1.3)
ẋ = y,

ẏ = −a(x2 − 1)y − fx(x+ d)(x+ e).

The van der Pol equation has been considered as one node so that a coupled system of two nodes
has been generated. This model includes both the SA and AV node. The created system that we
analyze is given as follows:

ẋ1(t) =y1(t) + (k − k1)x1(t− w1)− kx1(t) + k1x1(t− w2),
ẏ1(t) =− a1(x1(t)2 − 1)y1(t)− f1x1(t)(x1(t) + d1)(x1(t) + e1)

+ s1(x2(t)− x1(t)),
ẋ2(t) =y2(t),
ẏ2(t) =− a2(x2(t)2 − 1)y2(t)− f2x2(t)(x2(t) + d2)(x2(t) + e2)

+ s2(x1(t)− x2(t)),

(1.4)

where x1 -potential of SA node, x2 – potential of AV node, y1, y2 – currents, a1, a2, f1, f2, d1, d2,
e1, e2 are control parameters. k, k1, s1, s2 – coupling coefficients and w1, w2 – delays (In case in
which there is a feedback we use a delay because original signal of SA node is modified by signal
from flutter wave with delay. Delay is caused by longer way of signal of the flutter wave. Delay is
only in x1 variable because in this pathological behaviour there is a flutter wave only in SA node).

The coupling coefficients correspond to the ’power’ of feedback or unidirectional or bidirec-
tional coupling. Depending on the tissue by which the pulse passes the value of the coupling ratio
may vary. In our system, the feedback describes the situation when the output from the system
influences the input and modifies the system’s action.

Parameter’s values for the modified van der Pol oscillator were chosen such that the oscillation’s
frequency corresponds to a real frequency of SA and AV nodes. The setup of particular parameters
and acceptable variability ranges are briefly presented below. This information is essential for
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examining stability of our setup because without such limitations the system could have completely
different properties and would not recreate physiological properties. Modification of the parameter
a value increases time intervals between pulses but also changes their shapes. This behavior is
inconsistent with physiological observations. This disadvantage of the van der Pol oscillator is
related to the phase space structure. Modification of the e parameter of the node location influences
the distance between consecutive potential needles without changing their shapes. This means
that the mutual position of a saddle and a node influences the time of spontaneous depolarization
which is one of the physiological mechanisms of a regulation of the action potential generation
frequency. Dependency of the considered oscillator on the parameter e is nonlinear, [3]. Saturation
of the curve is consistent with physiological observations because of the fact that heart’s ability to
increase a rhythm frequency decreases for higher rhythm frequencies. The parameter e plays
a major role in the validation process of the model. The parameter a is in the range [0.5, 6], the
parameter e belongs to the interval [7, 12] and the parameter f may change only in the small range
[2.5, 3]. A more detailed description of the physiological interpretation of the parameters can be
found in the work [12].

The system with a sum of delays with feedback describes the SA block in which the potential
wave is not conducted in a physiological way. The action potential is generated in the SA node,
however, it is not conducted normally. Instead, it forms a re-entry wave(which is delayed relative
to the original potential because it circulates around the SA node before it is conducted to the next
structure). There can be more than one non-conducted potential and this the model includes two
feedbacks with delay. These terms are added to the first van der Pol equation for the SA node.
This is typical behaviour of the Weckenbach block. The Weckenbach block is caused by a disease
process involving the sinus node and atrial muscle which gives rise to abnormal conduction in
the sinoatrial node. There are situations when output potential from SA node influences the input
potential and modifies the action of the system. The two values of the coupling coefficients k1 and
k2 take into account the transition of wave through various cardiac tissues.

The coupling between these two nodes can be either unidirectional or bidirectional. In this case,
the coupling is unidirectional, i.e. it is from the SA node to the AV node (s2 6= 0, s1 = 0) or from
the AV node to SA node(non-physiological behaviour s1 6= 0, s2 = 0).

1.2. The problem of synchronization. The behaviour of the cardiac pacemaker cells resembles
that of a relaxation oscillators. A characteristic feature of a relaxation oscillator is that it can
be synchronized by an external signal if the latter has a periodicity is not significantly different
from the spontaneous frequency of the oscillator [5]. Synchronization, defined as an adjustment
of rhythm due to weak interaction, is one of the most interesting features displayed by coupled
oscillators. In this paper, we have investigated a phenomenological heartbeat that consists of two
coupled van der Pol oscillators.

2. NUMERICAL ANALYSIS

It will be subjected to numerical analysis model that reproduces the physiological behavior of
the potentials occurring in a conducting system of the heart. A system with delayed feedback
describes various pathologies of the heart action, e.g. the SA block. When the coupling s2 is
added, the SA node affects the AV node rhythm. This is physiological behaviour. Adding s1
causes pathological behaviour that we get re-entry wave in our system. This is typical of the WPW
syndrome. After including feedback and delay, the time series looks like in the Figure 1. The top
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FIGURE 1. Time series a) model without feedback, b) with feedback

graph shows the initial model with no feedback. The bottom graph in Figure 1 shows a modified
model with feedback.

The parametres k = 1, k1 = 2.85 andw1 = 0.75, w2 = 0.25 (delays in our research are constant)
have the following values, while the other parameters are reference parameters: a1 = a2 = 5, f1 =
f2 = 3, d1 = d2 = 3, e1 = 7, e2 = 4.5. The selection of appropriate parameters was done after
the verification of the Eq. (1.3) by Grudziński in [3]. Parameters values for mvdP were chosen
so that the oscillations frequency corresponds to real frequencies of the SA and AV nodes. In
the time series of the modified model with feedback, there is a ’delayed impulse’. The period of
this oscillator is almost two times longer than that in the reference model (the potential period
for a single node model of an electrical conduction system with no coupling and feedback equals
about 1.4), similarly to the second type of the SA block. This is one of the mechanisms causing
bradycardia.If the SA nodal impulses occur at a rate less than 60 beats/minute, the heart rhythm is
known as bradycardia (normal sinus rhythm: 60-100 beats/minute). Re-entries play an important
role in the formation of cardiac arrhythmias. They are modelled using a feedback term which is
added to the van der Pol equation. The use of certain values for coupled terms enables simulating
the circulation of reentry waves which play an important role in generating pathological heart
rates. Formation of the reentry wave is a result of time differences in repolarisation and refraction
between abutting cells of the cardiac muscle. They can evoke a local delay and create locally
unidirectional block which fosters the pronation of the wave of conduction. Now we change in our
system one of the coupling coefficients k1. The results in a significant difference in the time series
of the modified van der Pol’s equations. If k1 = 2.5 is present, a kind of tachycardia is obtained.
The amplitude death can be understood as full heart block and it is appeared for k1 = 3, as shown
in Figure 2. The top graph in Figure 2 shows that curve of x2 is not changed because the feedback
directs only variable of x1 (feedback is added to first part of system ). We can observe changes of
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FIGURE 2. Time series: Model with feedback, where k1 is changed

the behaviour of action potential under the influence of the addition of the feedback in the bottom
graph in Figure 2.

Third degree of SA block is characterized by no atrial activity. No impulses are conducted to the
AV node. As a result, the AV node may take over the function of pacemaker. In order to reproduce
the escape rhythm, s1 has to be added to our system, Figure 3. The graphs show that x1 and x2 have
a similar period length, but there is no phase synchronization. Figure 3 shows a part of anti-phase
synchronization, the curves have a different shape. The curve x1 has a breakdown curve which
shows that oscillations have a more and less sensitive phase (time of refraction). For largers1 = 5,
the death amplitude can also be observed. This interesting behaviour has been observed for other
large values of at least one coupling coefficient. However, we are not sure as to its nature.

There is no changes of variable of x2 because in this case, there is only unidirectional coupling.
If the coupling s1 is introduced to our system, it means that the x2 directs the x1. This is the reason
why there is no changes in the behavior of the variable x2.

If the physiological coupling between nodes is considered, than the coupling s2 is introduced
to our system. It means that the SA node directs the AV node (If the coupling s2 is introduced to
our system, it means that the x1 directs the x2. This is the reason why there is no changes in the
behavior of the variable x1). If s2 is small, the result is similar to the reference value. If its value is
larger (e.g. [12]), the system strives to complete synchronization in phase with x1. If s2 is larger,
full in-phase synchronization is obtained as shown in Figure 4. This causes the attempt of fitting
the AV frequency to the SA frequency which slows down the heart rate.

Next numerical analysis has been prepared for a model with the parameters k = 1, k1 = 2.85
and w1 = 0.75, w2 = 0.25 and the other parameters are identical to those in the reference system.

The addition of coupling to y1 term in a model with feedback enables modelling a re-entry
wave which causes an exceptional situation in that the AV node is the master for the SA node.
Such situation takes place in case of WPW syndrome. Slowing the oscillations down caused by
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FIGURE 3. Time series: Model with feedback and coupling coefficient s1

FIGURE 4. Time series: physiological coupling between nodes

feedback and addition of s1 coupling we obtain the aperiodic behaviour. The big arrythmia occurs.
From the medical point of view it resembles atrial fibrillation. The oscillator begins to behave
aperiodically in an attempt to adjust its frequency to the frequency of the AV node. The oscillation
period tends to be shorter despite no periodic behaviour, as shown in Figure 5. The amplitude
changes with time as illustrated in the graph x1 in Figure 5. If s1 is large, our system attempts
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FIGURE 5. Time series:pathological coupling between nodes

to achieve synchronization in phase, but the curve x1 has a different shape. The system is phase-
sensitive, and that depending on phase, excitation (here a kind of wave which is generated in
coupling process) may change the length of the potential period. The results of this analysis have
been confirmed experimentally.

Figure 6 and 7, plots of synchronization for the model without feedback show that for system
with the coupling s2, synchronization of the system is greater than for a system with the coupling
s1. Similar results have been obtained for a system with feedback.

Last we studied the influence of the bidirectional coupling for behaviour of our model. It would
seem that the bidirectional coupling should operate so that when we enter it 1 : 1 between the node
SA (60-100 bmp) and the AV node (40-60 bmp), the rhythm of the sinus node should be slowed
down, while the rhythm of the AV node should accelerate.

In the model without feedback, with s1 = 20 and s2 = 1, aperiodic potential x1 is obtained
– typical arrhythmia, Figure 8. There is no synchronization for these parameters. However, with
smaller values of s1, a part of synchronization can be found in the system. Large values of s1 cause
the most significant changes in the x1 signal.

An interesting behaviour is obtained with the same model, however, with feedback as shown in
Figure 9. The behaviour of the curve x2 is similar to that shown in Figure 8. There is periodic
behaviour and small changes in the the course of chart. But the time series for x1 is highly excep-
tional. The length of the period has increased significantly. The signal does not exhibit periodic
behavior for large values of s1. In this case, the system is characterized by two types of feedback,
where one of them is unidirectional (adding to the first equation of our model) and the other one
is bidirectional. We can see a strong activity of feedback, which is posed in the model. As can be
seen in Figure 1, this type of feedback with delay causes the system to continue to behave period-
ically, while the oscillation period is considerably longer and the shape of oscillations is changed.
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a) s1 = 5 b) s1 = 10

FIGURE 6. Synchronization plot for unidirectional cases: a) s1 = 5 and b) s1 = 10,
initial conditions: [0.1; 0.1; 0.1; 0.1]

a) s2 = 5 b) s2 = 10

FIGURE 7. Synchronization plot for unidirectional case: s2

By adding the bidirectional coupling, the system has two couplings, where the bidirectional cou-
pling strengthens the feedback in the system, leading to significant changes in the behavior of the
system. The length of the oscillation period varies with time and lasts up to 3 times longer com-
pared to the reference model and the strong oscillatory nature of the system disappears. It is worth
noting that with lower values of s1 and s2 the system behaves periodically, even though the period
of oscillation is longer (identical to that with a single feedback).

Such dynamics of the action potential can be observed in the presence of bradycardia due to
conduction block in the conduction system of the heart. Feedback occurring in the mathematical
model corresponds here re-entry waves generated by the closure the impulse road by the occurrence
of the block of the heart. Often with this type of block coexist disorder in the relationship between
nodes. In this case, the AV node can start to work just as a pacemaker (SA node), hence we
introduce here also additionally bidirectional coupling. It is worth noting that during bradycardia,
heart rhythm must be slower than typical and does not have to be regular.

3. CONCLUSIONS

The analyzed system is stable and not easy to put out of periodic behaviour. The setup of a single
delay feedback was characterized by low variability and strong oscillatory nature. It is worth noting
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FIGURE 8. Time series: bidirectional coupling between nodes

FIGURE 9. Time series:bidirectional coupling between nodes

that the system discussed functions over a very narrow range of control parameters. If we add to
the system proposed by us a number of couplings in order to reproduce the phenomena occurring
in the conducting system, this will greatly influence the behaviour of the oscillator. It can cause the
extinction of oscillations as well as non-periodic behaviour. The ability to recreate physiological
behaviour is extremely important, especially because such behaviour includes disorders whose
sources lie in the complex processes of the conducting system. This couplings of mathematical
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system interfere in similar way in a work of conduction system of the heart (SA block, AV block,
bradycardia, WPW syndrome). Synchronization in the investigated cases is rarely in-phase, often
in anti-phase. Bidirectional coupling should be used to describe the physiological behaviour of
the conduction system because only this way we can take into account the effect of the AV node
as a delay element (coupling s1). In this study, the model correctly reproduces pathologies of the
heart action such as SA block or one of arrhythmias. However, it should be noted that this is
a phenomenological model, four-dimensional, so that the results are as accurate as possible using
a simple model to describe the potential found in one of the most complex biological oscillators.
In further research it is planned to perform the bifurcation analysis for selected, more essential,
parameters. This will allow for a better understanding of the dynamics of examined model.

REFERENCES

[1] R.S. Barbosa, J.A.T. Machado, Analysis of the Van der Pol Oscillator Containing Derivatives of Farctional Order,
Journal of Vibration and Control 139(9-10): 1291–1301, 2007.

[2] A. Buonomo, The periodic solution of van der Pol’s equation, SIAM J. Appl. Math. 59(1): 156–171, 1998.
[3] K. Grudzinski, Modelowanie czynnosci elektrycznej układu przewodzenia serca, rozprawa doktorska, Wydział

Fizyki Politechniki Warszawskiej, 2007.
[4] J. Guckenheimer, Dynamics of the Van der Pol Equation, IEEE Transactions on Circuits and Systems 27(11):

983–989, 1980.
[5] L. Henk van der Tweel, F.L. Meijler, F.J.L. van Capelle, Synchronization of the heart, Journal of Applied Physiol-

ogy 34(2), 1973.
[6] P. Perlikowski, A. Stefanski, T. Kapitaniak, Discontinuous synchrony in an array of Van der Pol oscillators,

International Journal of Non-Linear Mechanics 45: 895–901, 2010.
[7] D. Postnov, S.K. Han, H. Kook, Synchronization of diffusively coupled oscillators near the homoclinic bifurcation,

Physical Review E 60(3), 1999.
[8] A.M. dos Santos, S.R. Lopes, R.L. Viana, Rhythm synchronization and chaotic modulation of coupled Van der Pol

oscillators in a model for the heartbeat, Physica A 338: 335–355, 2004.
[9] K. Tsumoto, T. Yoshinaga, H. Kawakami, Bifurcations of synchronized responses in synaptically coupled

Bonhoffer-van der Pol neurons, Physical Review E 65, 2002.
[10] Y. Uwate, Y. Nishio, Synchronization Phenomena in van der Pol oscillators coupled by a time-varying resistor,

International Journal of Bifurcation and Chaos 17(10): 3565–3569, 2007.
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