Solving boundary value problems for second order singularly disturbed delay differential equations by ε -approximate fixed-point method

Zbigniew Bartoszewski¹, Anna Baranowska

¹Gdańsk University of Technology ul. Narutowicza 11/12, 80-233 Gdańsk, Poland

The presentation will be devoted to numerical solution of boundary value problems for second order singularly perturbed delay differential equations of the form

$$\epsilon y''(x) = f(x, y(x), y'(x), y(\alpha(x))), \qquad a \le x \le b, \tag{1}$$

$$y(x) = \phi(x) \text{ for } x \le a, \qquad y(b) = \psi.$$
 (2)

where the functions f, ϕ and α ,

$$f: D \to R, \quad D = \{(t, z_1, z_2, z_3) : a \le t \le b, -\infty \le z_i \le +\infty\},$$

$$\phi: [\gamma, a] \to R, \quad \alpha: [a, b] \to (-\infty, b], \quad \gamma = \min_{a \le x \le b} \alpha(x)$$

are continuous and $0 < \epsilon \ll 1$. Problem (1) – (2) is reduced to a linear boundary problem for the system of two equations of the form

$$\mathcal{E}\frac{d\vec{y}(x)}{dx} = g(x, \vec{y}(x), \vec{y}(\alpha(x))), \quad a \le x \le b,$$
(3)

$$P_1 \vec{y}(x) + P_2(b - a + x) \vec{y}(b - a + x) = \Phi(x), \quad x \in [a - \tau, a], \tag{4}$$

with suitably chosen 2×2 matrices P_1, P_2 and the diagonal matrix $\mathcal{E} = \text{diag } \{1, \epsilon\}$. For solving problem (3) – (4) we construct a numerical method based on the following theorem [1].

Theorem 1 If

- a) operator A is continuous in L,
- b) the family of spaces S_h and the families of operators r_h and p_h define a convergent approximation of L,

then A possesses at least one fixed-point if and only if there exists a non-negative function $\varepsilon(h)$, $\varepsilon(h) \to 0$ for $h \to 0$ such that the operator A possesses $\varepsilon(h)$ -fixed-points $p_h x_h$ and the family $\{p_h x_h \mid h \in M\}$ is compact with $h \to 0$.

Problem (3) - (4) is reduced to a fixed-point with the help of an auxiliary linear problem

$$\vec{y}'(x) = B\vec{y}(x) + \vec{v}(x), \quad x \in [a, b], \tag{5}$$

$$P_1 \vec{y}(a) + P_2(b) \vec{y}(b) = \Phi(a), \tag{6}$$

and the fixed-point \vec{v} is approximated by a cubic spline. The results of numerical experiments for some examples of problems in the form (1) - (2) will be provided and a comparison with the results obtained with other numerical methods applied to these examples will also be given.

[1] Z. Bartoszewski, A new approach to numerical solution of fixed-point problems and its application to delay differential equations, Appl. Math. Comput., 215 (2010), 4320–4331.